PS09 Multiscale Finite Element Analysis of Piezoelectric Materials based on EBSD Crystal Morphology Analysis : investigation on Micro Finite Element Modeling

2009 ◽  
Vol 2009 (0) ◽  
pp. 445-446
Author(s):  
Yuuki TANIGUCHI ◽  
Syusuke KIMURA ◽  
Hiroyuki KURAMAE ◽  
Kazuyoshi TSUCHIYA ◽  
Yasutomo UETSUJI
2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zhao Xu ◽  
Zezhi Rao ◽  
Vincent J. L. Gan ◽  
Youliang Ding ◽  
Chunfeng Wan ◽  
...  

Mesh generation plays an important role in determining the result quality of finite element modeling and structural analysis. Building information modeling provides the geometry and semantic information of a building, which can be utilized to support an efficient mesh generation. In this paper, a method based on BRep entity transformation is proposed to realize the finite element analysis using the geometric model in the IFC standard. The h-p version of the finite element analysis method can effectively deal with the refined expression of the model of bending complex components. By meshing the connection model, it is suggested to adopt the method of scanning to generate hexahedron, which improves the geometric adaptability of the mesh model and the quality and efficiency of mesh generation. Based on the extension and expression of IFC information, the effective finite element structure information is extracted and extended into the IFC standard mode. The information is analyzed, and finally the visualization of finite element analysis in the building model can be realized.


Author(s):  
G. B. Sinclair ◽  
N. G. Comier ◽  
J. H. Griffin ◽  
G. Meda

The stress analysis of dovetail attachments presents some challenges. These challenges stem from the high stress gradients near the edges of contact and from the nonlinearities attending conforming contact with friction. To meet these challenges with a finite element analysis, refined grids are needed with mesh sizes near the edges of contact of the order of one percent of the local radii of curvature there. A submodeling procedure is described which can provide grids of sufficient resolution in return for moderate computational effort. This procedure furnishes peak stresses near contact edges which are converging on a sequence of three submodel grids, and which typically do converge to within about five percent.


2013 ◽  
Vol 275-277 ◽  
pp. 105-110 ◽  
Author(s):  
Yong Qing Ye ◽  
Chao He Chen ◽  
Xiao Liu

This paper discusses the laminated structure and sandwich structure by finite element modeling, the process of finite element modeling of composite panel with top-hat stiffeners and finite element analysis of the whole hull. The result shows that the method and steps of modeling FRP yacht based on FEM to directly calculate the hull structural strength are instructive.


1999 ◽  
Vol 124 (1) ◽  
pp. 182-189 ◽  
Author(s):  
G. B. Sinclair ◽  
N. G. Cormier ◽  
J. H. Griffin ◽  
G. Meda

The stress analysis of dovetail attachments presents some challenges. These challenges stem from the high stress gradients near the edges of contact and from the nonlinearities attending conforming contact with friction. To meet these challenges with a finite element analysis, refined grids are needed with mesh sizes near the edges of contact of the order of one percent of the local radii of curvature there. A submodeling procedure is described which can provide grids of sufficient resolution in return for moderate computational effort. This procedure furnishes peak stresses near contact edges which are converging on a sequence of three submodel grids, and which typically do converge to within about five percent.


1985 ◽  
Vol 107 (1) ◽  
pp. 48-53 ◽  
Author(s):  
C. Georgiadis

The response of long floating structures to a harmonic excitation is the basis for the response calculation in a short-crested wave field. This paper will present consistent formulas for obtaining the nodal loads in a finite element analysis. The accuracy of the method used is compared with the results obtained using a Rayleigh-Ritz approximation of the response with continuous eigenfunctions. The error of using an irrational finite element model is demonstrated for comparison, and to indicate to designers of similar structures the large effects which they may be overlooking.


Sign in / Sign up

Export Citation Format

Share Document