Effect of tool tilt angle on cutting characteristics in micro-ball end milling

2019 ◽  
Vol 2019.13 (0) ◽  
pp. A35
Author(s):  
Kento YASUTOMI ◽  
Katsuhiko SAKAI ◽  
Hiroo SHIZUKA
2013 ◽  
Vol 371 ◽  
pp. 48-53 ◽  
Author(s):  
Ioan Pasca ◽  
Mircea Lobonțiu ◽  
Róbert Čep ◽  
Mihai Banica

Due to the expansion of milling process with ball end mill in various branches of industry it became necessary for this process to be optimized. For this purpose it is necessary to identify the parameters that influence the process and establish their value for witch the results obtained to be the maximum in terms of qualitative and quantitative. Roughness of the surface machined can be considered as an important element that reflects the degree of successful optimization of this process. In order to solve the problems relating to the analysis and estimation of the surface roughness variation in ball end milling of C45 material with tool tilt angle, in this paper it was designed an experimental methodology followed by analysis of experimental data and estimation of surface roughness variation. The experimental research methodology presented in this paper can be extrapolated and used in a large number of processes.


Author(s):  
B.B. Ponomarev ◽  
S.H. Nguyen

Unlike three-axis machining, five-axis machining allows the end tool or workpiece to be oriented at any angle relative to the machine axis OZ. It can be achieved by changing the values of the tool tilt angle and lead angle relative to the surface normal in the contact zone of the tool surface and the workpiece, taking into account the direction of the table feed. The article presents experimental results of analyzing the influences of tool orientation on transverse roughness during ball end milling using 2-flute and 4-flute 8 mm diameter mills. The analysis the arithmetic mean deviation of the assessed profile at various values of tool tilt angle and lead angle showed that the position of the tool point with a zero cutting speed significantly affects the surface quality. The results of the evaluation of the tool orientation influence on the surface roughness enable the selection of optimal tool orientation angles when developing control programs for end milling of free-form surfaces on five-axis CNC milling machines.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 237
Author(s):  
Yue Liu ◽  
Zhanqiang Liu ◽  
Wentong Cai ◽  
Yukui Cai ◽  
Bing Wang ◽  
...  

Aero-engine blades are manufactured by electroforming process with electrodes. The blade electrode is usually machined with five-axis micromilling to get required profile roughness. Tool path planning parameters, such as cutting step and tool tilt angle, have a significant effect on the profile roughness of the micro-fillet of blade electrode. In this paper, the scallop height model of blade electrode micro-fillet processed by ball-end milling cutter was proposed. Effects of cutting step and tool tilt angle the machined micro-fillet profile roughness were predicted with the proposed scallop height model. The cutting step and tool tilt angle were then optimised to ensure the contour precision of the micro-fillet shape requirement. Finally, the tool path planning was generated and the machining strategy was validated through milling experiments. It was also found that the profile roughness was deteriorated due to size effect when the cutting step decreased to a certain value.


2021 ◽  
Vol 33 ◽  
pp. 264-276
Author(s):  
Hesamoddin Aghajani Derazkola ◽  
Naser Kordani ◽  
Hamed Aghajani Derazkola

2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2000 ◽  
Vol 123 (3) ◽  
pp. 369-379 ◽  
Author(s):  
Rixin Zhu ◽  
Shiv G. Kapoor ◽  
Richard E. DeVor

A mechanistic modeling approach to predicting cutting forces is developed for multi-axis ball end milling of free-form surfaces. The workpiece surface is represented by discretized point vectors. The modeling approach employs the cutting edge profile in either analytical or measured form. The engaged cut geometry is determined by classification of the elemental cutting point positions with respect to the workpiece surface. The chip load model determines the undeformed chip thickness distribution along the cutting edges with consideration of various process faults. Given a 5-axis tool path in a cutter location file, shape driving profiles are generated and piecewise ruled surfaces are used to construct the tool swept envelope. The tool swept envelope is then used to update the workpiece surface geometry employing the Z-map method. A series of 3-axis and 5-axis surface machining tests on Ti6A14V were conducted to validate the model. The model shows good computational efficiency, and the force predictions are found in good agreement with the measured data.


Sign in / Sign up

Export Citation Format

Share Document