1D25 Mass Measurement Using the Fixed-Point of a Spring-Mass System with a Dynamic Vibration Absorber and an Inertial-Mass Vibrator(The 12th International Conference on Motion and Vibration Control)

2014 ◽  
Vol 2014.12 (0) ◽  
pp. _1D25-1_-_1D25-12_
Author(s):  
Tomoyuki KORIKAWA ◽  
Yuji ISHINO ◽  
Masaya TAKASAKI ◽  
Takeshi MIZUNO
2012 ◽  
Vol 6 (3) ◽  
pp. 241-250 ◽  
Author(s):  
Satoru YAMAMOTO ◽  
Yuji ISHINO ◽  
Masaya TAKASAKI ◽  
Takeshi MIZUNO

Author(s):  
Takeshi Mizuno ◽  
Shinsuke Sato

A new vibration-type mass measurement system with an undamped dynamic vibration absorber was developed. In the developed system, a measurement object is attached to the inertial mass of the vibration generator instead of the absorber mass. It has an advantage that the tuning condition of the absorber is not influenced by the mass of measurement objects. The measurement accuracy of the developed system was estimated experimentally when it was fixed on a massive base and on a flexible structure. The results demonstrated that measurement accuracy was almost same in both the cases. It was also shown that the vibration of the table in transient states was reduced by increasing the excitation signal gradually from zero to an amplitude for measurement.


2010 ◽  
Vol 36 ◽  
pp. 21-30 ◽  
Author(s):  
Takeshi Mizuno

A review of mass measurement devices developed by the author is presented. According to the measurement principles, the treated devices are classified into two types. The first type uses a dynamic vibration absorber as a device for both mass measurement and vibration control. The main advantage is no vibration transmitted into the surrounding structures during measurement. The second type uses relay feedback. The advantages are simpler mechanism and robustness against disturbances. In this article, the principles of measurement of each type are presented.


2021 ◽  
Author(s):  
Yu SUN ◽  
Jinsong Zhou ◽  
Dao Gong ◽  
Yuanjin Ji

Abstract To absorb the vibration of the carbody of the high-speed train in multiple degrees of freedom, a multi-degree of freedom dynamic vibration absorber (MDOF DVA) is proposed. Installed under the carbody, the natural vibration frequency of the MDOF DVA from each DOF can be designed as a DVA for each single degree of freedom of the carbody. Hence, a 12-DOF model including the main vibration system and a MDOF DVA is established, and the principle of Multi-DOF dynamic vibration absorption is analyzed by combining the design method of single DVA and genetic algorithm. Based on a high-speed train dynamics model including an under-carbody MDOF DVA, the vibration control effect on each DOF of the MDOF DVA is analyzed by the virtual excitation method. Moreover, a high static and low dynamic stiffness (HSLDS) mount is proposed based on a cam–roller–spring mechanism for the installation of the MDOF DVA due to the requirement of the low vertical dynamic stiffness. From the dynamic simulation of a non-linear model in time-domain, the vibration control performance of the MDOF DVA installed with nonlinear HSLDS mount on the carbody is analyzed. The results show that the MDOF DVA can absorb the vibration of the carbody in multiple degrees of freedom effectively, and improve the running ride quality of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document