W10I Active Vibration Control Using Piezoelectric High-Polymer Films(International Workshop on "New Frontiers of Smart Materials and Structural Systems")

2006 ◽  
Vol 2006.14 (0) ◽  
pp. 313-314
Author(s):  
Tsutomu Nishigaki
2012 ◽  
Vol 226-228 ◽  
pp. 2385-2389 ◽  
Author(s):  
Guang Hui Chang ◽  
Shi Jian Zhu ◽  
Jing Jun Lou

This paper focuses on the development of load-dependent hysteresis model for Giant magnetostrictive materials (GMM). GMM are a class of smart materials and which are used mostly as actuators for active vibration control. Magnetostrictive actuators can deliver high ouput forces and relatively high displacements. Here, Terfenol-D, a magnetostrictive material is studied. Unlike the hysteresis seen in magnetic materials, The shape of Terfenol-D hysteresis curve changes significantly if the load is changed. To meet performance requirements for active vibration control, an accurate hysteresis model is needed. By modeling the Gibbs energy for each dipole and the equilibrium states, load-dependent hysteresis of GMM is modeled. Then a new PSO-LSM algorithm is brought forward by combing the Particle Swarm Optimization (PSO) with the least square method (LSM).Throughout this algorithm the model parameters were identified. The model results and experimental data were compared at different loads. The simulation results show that the load-dependent hysteresis model optimized by PSO-LSM yields outstanding performance and perfect accuracy.


Author(s):  
Toshihiko Komatsuzaki ◽  
Toshio Inoue ◽  
Yoshio Iwata

Magneto-rheological elastomer (MRE) is known as class of smart materials whose elastic property can be varied by the applied external magnetic field. For the use of semi-active vibration control, any kind of external sensor such as accelerometer or displacement sensor is usually used to monitor the real-time response of structures while leaving cost, proper installation and maintenance problems for real applications. In addition to the field-dependent stiffness change property of MRE, the electrical resistance of the composite is also changed by the induced strain within the elastomer providing a new self-sensing feature as a multifunctional material. In the present study, a novel dynamic vibration absorber having self-sensing function and adaptability using Magneto-rheological elastomer is developed. The natural frequency of the absorber is instantaneously tuned to a dominant frequency extracted from the strain signal. The damping performance of the absorber is investigated by applying the absorber to a fundamental base-excited 1-dof vibration system. Investigations show that the vibration of the target structure exposed to a non-stationary disturbance can be satisfactorily reduced by the proposed frequency-tunable dynamic absorber without the use of an external sensor, at the exceeding performance in comparison to conventional passive-type dynamic absorber.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Juntao Fei ◽  
Yunmei Fang ◽  
Chunyan Yan

Considerable attention has been devoted to active vibration control using intelligent materials as PZT actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods: optimal PID control, strain rate feedback control (SRF), and positive position feedback control (PPF) are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF and PPF controls have better performance in suppressing the vibration of cantilever steel beam than the optimal PID control.


Sign in / Sign up

Export Citation Format

Share Document