404 Fatigue Life Estimation Method and Problem on the Joint between a Disk and a Blade of Gas Turbine Engine

2009 ◽  
Vol 2009.17 (0) ◽  
pp. _404-1_-_404-2_
Author(s):  
Yusuke Ueda ◽  
Hiroshi Kuroki ◽  
Yoichi Yamashita
2021 ◽  
Author(s):  
Hang Zhao ◽  
Zengbu Liao ◽  
Jinxin Liu ◽  
Ming Li ◽  
Wei Liu ◽  
...  

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Dong-Yub Kim ◽  
Myung-Hyun Kim

Abstract High-frequency mechanical impact (HFMI) post-treatment is a proven method to improve the fatigue life of welded structures. The positive effects of HFMI treatment are influenced by the weld toe geometries and residual stresses. This study investigates the effect of geometric and mechanical improvements by HFMI treatment on fatigue strength with explicit consideration of the weld toe magnification factor. General fatigue life estimation method is based on experiment data, and residual stress may be considered in addition. In terms of HFMI-treated structures, geometric improvement also affects the fatigue life. Thus, a more efficient method is suggested by considering the weld toe magnification factor to assess the effects of HFMI treatment. First, the weld toe magnification factor in HFMI-treated conditions is calculated to consider the geometrical effect of HFMI treatment at the weld toe region. Second, a stress ratio model is introduced to consider the compressive residual stress by HFMI treatment based on the Paris equation. The results were validated by comparing them with the estimated fatigue life from previous studies on HFMI-treated welded specimens.


Author(s):  
Wasim Tarar ◽  
M.-H. Herman Shen

High cycle fatigue is the most common cause of failure in gas turbine engines. Different design tools have been developed to predict number of cycles to failure for a component subjected to fatigue loads. An energy-based fatigue life prediction framework was previously developed in recent research for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. A finite element approach for uniaxial and bending fatigue was developed by authors based on this constitutive law. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop a new QUAD-4 finite element for fatigue life prediction. The newly developed QUAD-4 element is further modified to obtain a plate element. The Plate element can be used to model plates subjected to biaxial fatigue including bending loads. The new QUAD-4 element is benchmarked with previously developed uniaxial tension/compression finite element. The comparison of Finite element method (FEM) results to existing experimental fatigue data, verifies the new finite element development for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can predict the number of cycles to failure at each location in gas turbine engine structural components. The new finite element provides a very useful tool for fatigue life prediction in gas turbine engine components. The performance of the fatigue finite element is demonstrated by the fatigue life predictions from Al6061-T6 aluminum and Ti-6Al-4V. Results are compared with experimental results and analytical predictions.


1996 ◽  
Vol 53 (5) ◽  
pp. 807-828 ◽  
Author(s):  
Robert G. Tryon ◽  
Thomas A. Cruse ◽  
Sankaran Mahadevan

2017 ◽  
Vol 60 (3) ◽  
pp. 421-427
Author(s):  
A. V. Pakhomenkov ◽  
R. A. Azimov ◽  
S. A. Bukatyi

Author(s):  
Wasim Tarar ◽  
M.-H. Herman Shen

High cycle fatigue is the major governing failure mode in aerospace structures and gas turbine engines. Different design tools are available to predict number of cycles to failure for a component subjected to fatigue loads. An energy-based fatigue life prediction framework was previously developed in recent research for prediction of axial, bending and torsional fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. A 1-D ROD element for unixial fatigue, a BEAM element for bending fatigue and a QUAD-4 element for biaxial fatigue were developed by authors based on this constitutive law. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop a new HEX-8 BRICK finite element for fatigue life prediction. The newly developed HEX-8 BRICK element has 8 nodes and each node has 3 degrees of freedom (DOF) in x, y and z directions. This element is further modified to add the rotational and bending DOFs for application to real world three dimensional (3D) structures and components. HEX-8 BRICK fatigue finite element has capability to predict the number of cycles to failure for 3-D objects subjected to multiaxial stresses. The new HEX-8 element is benchmarked with previously developed uniaxial tension/compression finite element in order to verify the new development. The comparison of finite element method (FEM) results to existing experimental fatigue data, verifies the new finite element development for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can predict the number of cycles to failure at each location in gas turbine engine structural components. The new finite element provides a very useful tool for fatigue life prediction in gas turbine engine components as it provides a complete picture of fatiguing process. The performance of the HEX-8 fatigue finite element is demonstrated by comparison of life prediction results for A16061-T6 to previously developed multiaxial fatigue life prediction approach by the authors. Another set of comparison is made to results for type 304 stainless steel data.


Sign in / Sign up

Export Citation Format

Share Document