3104 Study of Manufacturing Execution System Control with Actual and Virtual Model Differences

2009 ◽  
Vol 2009 (0) ◽  
pp. 33-34
Author(s):  
Yasuyuki Nishioka ◽  
Masaki Yamashita
2010 ◽  
Vol 102-104 ◽  
pp. 776-780 ◽  
Author(s):  
Xiu Lin Li ◽  
Jian Sha Lu ◽  
Guo Zhong Chai ◽  
Hong Tao Tang

To deal with problem of manufacturing system stability caused by uncertain factors in discrete production process, holon was introduced to manufacturing execution system (MES). A distributed manufacturing control architecture based on holon was established. This architecture using cooperation mechanism based stigmergy to realize agility, autonomy and intelligence of system control. Based on the architecture, holon driven agents to visit production elements, acquiring dynamic information of production process. Model design of production factors as order, resource, raw material, product and management factors as optimize, execution was described amply. Finally, workflow of this system was depicted with an example of uncertain order factor.


2010 ◽  
Vol 20-23 ◽  
pp. 1084-1090 ◽  
Author(s):  
Wen Long

Manufacturing Execution System (MES) links plan management and workshop control in an enterprise, which is an integrative management and control system of workshop production oriented to manufacturing process. To overcome the difficulties of traditional software development method, development of MES based on component is adopted to prompt development efficiency and performance of MES, which can be more reconstructing, reuse, expansion and integration, and MES domain analysis driven by ontology is investigated in detail. MES domain analysis driven by ontology is feasible and efficient through developing a pharmaceutics MES which applied in a pharmaceutics manufacturing factory.


2021 ◽  
Author(s):  
Muzaffar Rao ◽  
Thomas Newe

The current manufacturing transformation is represented by using different terms like; Industry 4.0, smart manufacturing, Industrial Internet of Things (IIoTs), and the Model-Based enterprise. This transformation involves integrated and collaborative manufacturing systems. These manufacturing systems should meet the demands changing in real-time in the smart factory environment. Here, this manufacturing transformation is represented by the term ‘Smart Manufacturing’. Smart manufacturing can optimize the manufacturing process using different technologies like IoT, Analytics, Manufacturing Intelligence, Cloud, Supplier Platforms, and Manufacturing Execution System (MES). In the cell-based manufacturing environment of the smart industry, the best way to transfer the goods between cells is through automation (mobile robots). That is why automation is the core of the smart industry i.e. industry 4.0. In a smart industrial environment, mobile-robots can safely operate with repeatability; also can take decisions based on detailed production sequences defined by Manufacturing Execution System (MES). This work focuses on the development of a middleware application using LabVIEW for mobile-robots, in a cell-based manufacturing environment. This application works as middleware to connect mobile robots with the MES system.


Sign in / Sign up

Export Citation Format

Share Document