manufacturing execution system
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 63)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

Manufacturing Execution Systems (MES) are still rather unknown compared to their relatives, Enterprise Information Systems. To date, most research about MES focused on technical aspects and implementation approaches. In this paper, five statistical models are developed and a web-based survey among global Operations and Supply Chain managers from the manufacturing industry is conducted. Managers were invited to complete a questionnaire, where the central questions queried the mentioned performance metrics, but also other conditions like the presence of ERP or Lean practices. When comparing the means between companies with and without an MES, it shows that on each performance metric, MES-companies perform better than non-MES companies do. The results of the statistical analysis support the authors’ claim that companies with an MES in place outperform their competitors without an MES on the inventory- and logistics performance, as well as on Order Lead Time.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012052
Author(s):  
Fangyu Pan ◽  
Yuewei Bai ◽  
Shupiao Liu ◽  
Li Nie

Abstract Compaired with mart manufacturing and digital manufacturing, virtual manufacturing is a more advanced mode, which is more flexible, more inexpensive and more suitable for modern competitive society. No matter what type of manufacturing, Manufacturing Execution System (MES) is necessary and plays a key role. So this paper focuses on the MES in virtual manufacturing. MES serves as a bridge to connect the upper planning layer and the control layer of the factory. It has at least 8 functions, including data collection, production process management, human resource management, workpieces tracking, production planning and scheduling, quality control, documentation system and maintenance management. As a typical virtual manufacturing enterprise, the company A is chosen to be introduced, including the background, composition of MES and implementation of MES.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2071
Author(s):  
Tingxin Song ◽  
Jincheng Zhou

This paper studies the production process of a shipbuilding enterprise. The company suffers from long manufacturing cycle, low utilization rate of personnel and an unbalanced production line. To solve these problems, the lean shipbuilding mode, mainly divided into shipbuilding work breakdown, production plan and virtual flow operation in this paper, is put forward, which combines the lean production and modern information management technology with shipbuilding. Supported by the theory of work breakdown structure and task package scheduling, the shipbuilding task package is reasonably divided. The priority of task package manufacturing is determined by calculating the task package manufacturing sequence coefficient, and a reasonable number of operators is calculated to ensure the continuity of segmented manufacturing. After determining the manufacturing priority of the task pack and the number of allocable personnel, the corresponding work can be scheduled. Production planning drives all production activities of the shipbuilding enterprise, and just-in-time production is achieved through the reasonable arrangement of these production plans, thus reducing the waste of personnel and time. Then, the virtual flow operation is carried out, which can achieve high efficiency of flow production and high flexibility of fixed workstation production during the production process of large-scale and heavy-duty products. The virtual assembly production system of the workshop is established according to the characteristics of shipbuilding operation and the actual production situation. On this basis, a lean shipbuilding manufacturing execution system for small and medium-sized shipbuilding enterprises is developed to achieve lean production in a shipbuilding workshop. Through the implementation of the lean shipbuilding mode based on task package scheduling and its manufacturing execution system, compared with the original data, the ship production cycle is reduced to 76.7%, the number of workers is reduced by 16.7% and the production balance rate is up to 81%.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042032
Author(s):  
E E Noskova ◽  
D V Kapulin ◽  
P A Russkikh

Abstract Lack of effective planning methods is one of the reasons for uneven use of production capacity, the occurrence of unplanned downtime and various types of losses. Small-scale make-to-order productions are characterized by weak workplaces specialization, by the versatility of the equipment used with a wide range of used components. They differ in the presence of repeated processing of part at the same workplaces and in occurrence of “a return flow” in a production system. The article discusses the features of planning due to technological specifics in such enterprises and a significant number of applicable incoming nomenclature items. Existing systems of production planning such Manufacturing Execution System and Advanced Planning & Scheduling System are compared, variants of their algorithmic implementation are proposed. The authors investigated the effectiveness of the application of the developed algorithms for different planning levels - interdepartmental and shop, depending of the size of order book and number of technological operations. The analysis of the conducted research allows us to assert that to provide synchronous scheduling in make-to-order small-scale productions it is necessary to apply combined planning approach using APS-and MES-technologies together.


2021 ◽  
Vol 13 (18) ◽  
pp. 10181
Author(s):  
Marcel Rolf Pfeifer

This study investigates the application of a smart manufacturing execution system (SMES) based on the current controlling structure in a medium-sized company in the Czech Republic. Based on existing approaches on the architecture of SMESs, this paper develops a sample architecture grounded in the current controlling structure of small and medium-sized enterprises (SMEs). While only a few papers on approaches to the given topic exist, this approach makes use of operative production controlling data and uses a standardisation module to provide standardised data. The sample architecture was validated with a case study on a Czech SME. This case study was conducted on two different entities of one production company suggesting differences in the entities due to the nature of production. The research showed that simple tasks with intelligent welding equipment allow for a working SMES architecture, while complex assembly works with a high extent of human labour, and a high number of components still remain an obstacle. This research contributes to gathering more understanding of SMES architectures in SMEs by making use of a standardisation module.


2021 ◽  
Vol 11 (16) ◽  
pp. 7581
Author(s):  
Richárd Beregi ◽  
Gianfranco Pedone ◽  
Borbála Háy ◽  
József Váncza

Digital transformation and artificial intelligence are creating an opportunity for innovation across all levels of industry and are transforming the world of work by enabling factories to embrace cutting edge Information Technologies (ITs) into their manufacturing processes. Manufacturing Execution Systems (MESs) are abandoning their traditional role of legacy executing middle-ware for embracing the much wider vision of functional interoperability enablers among autonomous, distributed, and collaborative Cyber-Physical Production System (CPPS). In this paper, we propose a basic methodology for universally modeling, digitalizing, and integrating services offered by a variety of isolated workcells into a single, standardized, and augmented production system. The result is a reliable, reconfigurable, and interoperable manufacturing architecture, which privileges Open Platform Communications Unified Architecture (OPC UA) and its rich possibilities for information modeling at a higher level of the common service interoperability, along with Message Queuing Telemetry Transport (MQTT) lightweight protocols at lower levels of data exchange. The proposed MES architecture has been demonstrated and validated in several use-cases at a research manufacturing laboratory of excellence for industrial testbeds.


2021 ◽  
Vol 13 (16) ◽  
pp. 9209
Author(s):  
Lamia Berrah ◽  
Vincent Cliville ◽  
Damien Trentesaux ◽  
Claude Chapel

This article addresses the issue of the industrial performance model and its evolution to cope with the context of Industry 4.0. With its digitalisation, intelligent/autonomous systems and wealth of data, Industry 4.0 offers opportunities that can achieve objectives better. It also presents risks and uncertainties that question the autonomy of the systems, their interaction with humans and the use of available data. The hypothesis put forward in this work is that the efficiency–effectiveness–relevance performance triangle can no longer guarantee long-term performance under these conditions and needs to be associated with an ethical dimension that allows for the risks and uncertainties relating to Industry 4.0 to be considered. Ethics is therefore considered to extend the triangle to a tetrahedron. A brief analysis of current performance management will first show the limits of the current practice in the context of Industry 4.0. The frameworks that could overcome these limits in light of new needs are then recalled and discussed, leading to the choice of ethics, whose main definitions and use in the engineering field are also introduced. The proposed (efficiency–effectiveness–relevance–ethics tetrahedron-based methodology is illustrated through a case study related to an aeronautical supplier, regarding the consequences of the implementation of a MES (Manufacturing Execution System) in terms of product traceability and operator autonomy. The discussion and prospects finally conclude this study.


Sign in / Sign up

Export Citation Format

Share Document