Investigation on the equivalent parameters of in-plane bending vibration in cylindrical shell using finite element method

2018 ◽  
Vol 2018.17 (0) ◽  
pp. 210
Author(s):  
Hirofumi INOUE ◽  
Soichiro TAKATA
2017 ◽  
Vol 39 (2) ◽  
pp. 149-164
Author(s):  
Nguyen Xuan Toan ◽  
Tran Van Duc

In this study, the finite element method (FEM) is used to investigate the dynamic response of continuous girder bridge due to moving three-axle vehicle . Vertical reaction forces of axles that change with time make bending vibration of girder significantly  increase. The braking in the first span is able to create response in other spans. In addition, the dynamic impact factors are investigated by both FEM and experiment for Hoa Xuan bridge. The results of this study provide an improved understanding of the bridge dynamic behavior and can be used as additional references for bridge codes by practicing engineers.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401985368 ◽  
Author(s):  
Jesús Acevedo-Mijangos ◽  
Antonio Ramírez-Treviño ◽  
Daniel A May-Arrioja ◽  
Patrick LiKamWa ◽  
Héctor Vázquez-Leal ◽  
...  

We present a resonant magnetic field sensor based on microelectromechanical systems technology with optical detection. The sensor has single resonator composed of two orthogonal silicon beams (600 µm × 26 µm × 2 µm) with an integrated mirror (50 µm × 34 µm × 0.11 µm) and gold tracks (16 µm × 0.11 µm). The resonator is fabricated using silicon-on-insulator wafer in a simple bulk micromachining process. The sensor has easy performance that allows its oscillation in the first bending vibration mode through the Lorentz force for monitoring in-plane magnetic field. Analytical models are developed to predict first bending resonant frequency, quality factor, and displacements of the resonator. In addition, finite element method models are obtained to estimate the resonator performance. The results of the proposed analytical models agree well with those of the finite element method models. For alternating electrical current of 30 mA, the sensor has a theoretical linear response, a first bending resonant frequency of 43.8 kHz, a sensitivity of 46.1 µm T−1, and a power consumption close to 54 mW. The experimental resonant frequency of the sensor is 53 kHz. The proposed sensor could be used for monitoring in-plane magnetic field without a complex signal conditioning system.


2003 ◽  
Vol 30 (2) ◽  
pp. 381-390
Author(s):  
L H You ◽  
J J Zhang ◽  
H B Wu ◽  
R B Sun

In this paper, a numerical method is developed to calculate deformations and stresses of the body of dry gas holders under gas pressure. The deformations of the wall plates are decomposed into out-of-plane bending and in-plane deformation. The out-of-plane bending of the wall plates is described by the theory of orthotropic plates and the in-plane deformation by the biharmonic equation of flat plates under plane stress. The theories of beam columns and beams are employed to analyze the columns and corridors, respectively. By considering compatibility conditions between the members and boundary conditions, equations for the determination of deformations and stresses of dry gas holders under gas pressure are obtained. Both the proposed approach and the finite element method are used to investigate the deformations and stresses of the body of a dry gas holder under gas pressure. The results from the proposed method agree with those from the finite element method. Because far fewer unknowns are involved, the proposed method is computationally more efficient than both the finite element method and the series method developed from the theory of stiffened plates.Key words: numerical approach, body of dry gas holders, gas pressure.


2016 ◽  
Vol 853 ◽  
pp. 276-280
Author(s):  
Xiao Hui Chen ◽  
Shi Yuan Liu ◽  
Tao Hu ◽  
Dong Xue Pei

Pressure vessel contained with different nozzles which caused geometric discontinuity of the pressure vessel wall, which resulted in stress concentration around the nozzle. There may be the chances of failure of vessel junction, which was attributed to the high stress concentration. Therefore, detail stress distribution analysis need to be done for pressure vessel with the nozzle. Determination of limit pressure at different location on lateral nozzle by using finite element method. Lateral nozzle was subjected to internal pressure and in-plane bending moment. Results found that plastic hinge occurred in the nozzle-vessel junction area shoulder. Plastic limit loading increased with the increasing of outside diameter and wall thickness of branch pipe when the size of primary piping was constant value, whereby the influence of outside diameter of branch pipe was more remarkable. Moreover, engineering estimation formulas of plastic limit in-plane bending moment was obtained based on plastic limit loading database.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Liping Xue ◽  
G. E. O. Widera ◽  
Zhifu Sang

The purpose of this paper is to demonstrate that the burst pressure of a cylindrical shell subjected to internal pressure can be accurately predicted by using finite element method. The computer software ANSYS (Swanson Analysis System Inc., 2003, “Engineering Analysis Systems User's Manual”) is employed to perform a static, nonlinear analysis (both geometry of deformation and material behavior) using three-dimensional 20 node structural solid elements. The “Newton–Raphson method” and the “arclength method” are both employed to solve the nonlinear equations. A comparison with various empirical equations shows that the static finite element method simulation using the arclength method can be employed with sufficient accuracy to predict the burst pressure of a cylindrical shell. It is also shown that the Barlow equation is a good predictor of burst pressure of cylindrical shells.


Author(s):  
Lyudmila S. Polyakova ◽  
Vladimir I. Andreev

The aim of research is to compare two calculation methods using the example of solving the axisymmetric thermoelasticity problem. Methods. The calculation of a thick-walled cylindrical shell on the temperature effect was carried out by the numerical-analytical method and the finite element method, implemented in the LIRA-CAD software package. The shell consists of three layers: two layers of heat-resistant concrete and an outer steel layer. In the calculation, a piecewise linear inhomogeneity of the shell due to its three-layer structure and continuous inhomogeneity caused by the influence of a stationary temperature field is taken into account. The numerical-analytical method of calculation involves the derivation of a resolving differential equation, which is solved by the sweep method, it is possible to take into account the nonlinear nature of the deformation of the material using the method of successive approximations. To solve this problem by the finite element method, a similar computational model of the shell was constructed in the LIRA-CAD software package. The solution of the problem of thermoelasticity for an infinite cylinder (under conditions of a plane deformed state) and for a cylinder of finite length with free ends is given. Results . Comparison of the calculation results is carried out according to the obtained values of ring stresses σθ.


Sign in / Sign up

Export Citation Format

Share Document