Effect of the Initial Tightening Force on Impact Strength for Bolted Joints of High Strength Bolt

2003 ◽  
Vol 2003 (0) ◽  
pp. 25-26
Author(s):  
Mitsuo KOBAYASHI ◽  
Katsumi FUKUDA ◽  
Michihiko TANAKA ◽  
Notake NIWA
2004 ◽  
Vol 2004.10 (0) ◽  
pp. 523-524
Author(s):  
Yasutomo TAKEDA ◽  
Takakatsu UTINO ◽  
Hiromasa ONO ◽  
Mitsuo KOBAYASHI ◽  
Notake NIWA

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3165 ◽  
Author(s):  
Rusong Miao ◽  
Ruili Shen ◽  
Songhan Zhang ◽  
Songling Xue

Pre-stressed bolted joints are widely used in civil structures and industries. The tightening force of a bolt is crucial to the reliability of the joint connection. Loosening or over-tightening of a bolt may lead to connectors slipping or bolt strength failure, which are both harmful to the main structure. In most practical cases it is extremely difficult, even impossible, to install the bolts to ensure there is a precise tension force during the construction phase. Furthermore, it is inevitable that the bolts will loosen due to long-term usage under high stress. The identification of bolt tension is therefore of great significance for monitoring the health of existing structures. This paper reviews state-of-the-art research on bolt tightening force measurement and loosening detection, including fundamental theories, algorithms, experimental set-ups, and practical applications. In general, methods based on the acoustoelastic principle are capable of calculating the value of bolt axial stress if both the time of incident wave and reflected wave can be clearly recognized. The relevant commercial instrument has been developed and its algorithm will be briefly introduced. Methods based on contact dynamic phenomena such as wave energy attenuation, high-order harmonics, sidebands, and impedance, are able to correlate interface stiffness and the clamping force of bolted joints with respective dynamic indicators. Therefore, they are able to detect or quantify bolt tightness. The related technologies will be reviewed in detail. Potential challenges and research trends will also be discussed.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2041-2053
Author(s):  
Jinfeng Jiao ◽  
Zhanxiang Liu ◽  
Qi Guo ◽  
Yong Liu ◽  
Honggang Lei

1969 ◽  
Vol 95 (8) ◽  
pp. 1768-1769
Author(s):  
Conrad P. Heins ◽  
Charles T. G. Looney

2021 ◽  
Author(s):  
Hitoshi Moriyama ◽  
Ryo Sakura ◽  
Takashi Yamaguchi ◽  
Takai Toshikazu ◽  
Yuta Yamamoto

<p>Welded joints is adopted rather than bolted joints for megastructure’s connections because the former can carry large force. However, the former has several problems, such as quality control of welding in situ, which the latter can solve. By contrast, as the load transfer ratio of each bolt becomes uneven proportionally to the number of bolts, local slip around extreme bolts occurs before the whole slip. Extreme bolts to which a large shear force is applied will break before other bolts. For utilizing the strength of all bolts, the problem is solved by improving shear deformation capacity in faying surface with novel surface treatment. Here, the treatment concepts were explored, and the coating’s effectiveness was evaluated through friction tests. The deformation capacity can be twice or more than that of conventional treatment, and the slip coefficient doesn’t depend on contact pressure. These features have the advantage to give stable slip behaviour.</p>


Sign in / Sign up

Export Citation Format

Share Document