scholarly journals Yield Points and Plastic Deformation of Mild Steel Cylinders under Internal Pressure

1952 ◽  
Vol 18 (65) ◽  
pp. 67-71
Author(s):  
Fujio NAKANISHI
1978 ◽  
Vol 13 (3) ◽  
pp. 112-117 ◽  
Author(s):  
J. Jelinek ◽  
P. Neufeld ◽  
G. A. Pickup

1999 ◽  
Vol 578 ◽  
Author(s):  
T. Hoc ◽  
C. Rey

AbstractStrain localization in mild steel submitted to a sequential loading paths is investigated at macroscopic, mesoscopic and microscopic scales. The experimental results demonstrate that the morphology of the localization and the nominal load-displacement curves depend on the microstructural anisotropy. A crystalline model using a finite element code is proposed. The anisotropy is described by a hardening matrix whose terms correspond to dislocation-dislocation interactions and depend on the evolution of the dislocation densities on the activated slip systems during the sequential tests. The strain localization predicted by this model fits with the experimental observation and allows us to assume that localization is correlated to the saturation on the activated slip systems.


1971 ◽  
Vol 6 (4) ◽  
pp. 273-278 ◽  
Author(s):  
H F Muensterer ◽  
F P J Rimrott

The propagation of plastic zones in a thin-walled sandwich-type cylinder has been analysed theoretically. Boundary conditions are clamped-clamped at both ends, i.e. no rotation is permitted. The material was assumed to behave isotropically and to obey the yieid criterion of Huber-Hencky-von Mises. Deformation was computed on the assumption that the vector of rate of strain was normal to the plastic-interaction curve. The predicted result was verified experimentally. Four specimens were built by lamination of a hexcell core between two concentric cylinders. In the two mild-steel specimens, the initial stage of plastic flow conformed well with the prediction. This proved that plastic flow is not initiated at the mid-position between the end constraints. In two aluminium specimens, this phenomenon of incipient plastic flow could not be observed owing to the absence of a pronounced yield point. The overall agreement was, however, satisfactory.


1984 ◽  
Vol 106 (1) ◽  
pp. 154-163 ◽  
Author(s):  
D. P. Saini

Mathematical models describing the deflection behavior of the wheel-work contact presented so far are based on the assumption that contact deflections are a direct function of the normal force on the wheel or the grains during grinding. This paper presents experimental results showing the evidence of a new mechanism of contact deflections due to the rotation of grain as a result of the tangential force component. In this perspective, a new model which considers the deflections due to both the normal and the tangential force is proposed and developed with the assumption of elasto-plastic deformation of the workpiece material around the grain during cutting. The model is shown to be consistent with experimental deflections obtained from single grain cutting on mild steel and EN25 steel specimens.


Sign in / Sign up

Export Citation Format

Share Document