loading path
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 98)

H-INDEX

24
(FIVE YEARS 5)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Yanfeng Yang ◽  
Cyrille Baudouin ◽  
Tudor Balan

The specific loading-path change during sheet metal forming may lead to some abnormal deformation phenomena. Two-stage orthogonal loading paths without elastic unloading have revealed a phenomenon of apparent loss of normality, further modeled in the literature by non-normality theories. In this paper, a particular orthogonal strain-path change is investigated using the Teodosiu–Hu hardening rule within an associated plasticity framework. The results indicate that cross work-hardening has a significant contribution to the apparent loss of normality and subsequent asymmetric yield surface evolution. Detailed contributions of the model’s ingredients and features are clarified. The developed material model is intended for sheet metal forming simulation applications.


2022 ◽  
Author(s):  
Yuan-Jian LIN ◽  
Jiang-Feng LIU ◽  
Tao CHEN ◽  
Bing-Xiang HUANG ◽  
Kundwa Marie Judith ◽  
...  

Abstract In this paper, a THMC (Thermal-Hydrological-Mechanical-Chemical) multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure, and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, it has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2389
Author(s):  
Ruixue Zhai ◽  
Zhuangkun Zhao ◽  
Jianhao Yang ◽  
Bangbang Ma ◽  
Gaochao Yu

Pre-stretching and post-bending are the simplest loading methods for the profile stretch-bending technical process. The inner layers of the profile are stretched and then compressed during the loading process. Considering the Bauschinger effect of metal materials, a new material model called the proportional kinematic hardening model was proposed. The stretch-bending mechanical model was established under a pre-stretching and post-bending loading path. The stress and strain on the cross section of profiles were analyzed. The analytic expressions of curvature radius of the strain neutral layer and bending moment were derived after loading. The analytic method for determining the curvature radius of the geometric center layer after unloading and springback during stretch-bending was established. The rectangular section ST12 profile with symmetrical characteristics is adopted, the stretch-bending experimental results show that the new proportional kinematic hardening model is more accurate than the classical kinematic hardening model in predicting the stretch-bending springback.


2021 ◽  
pp. 105678952110617
Author(s):  
Jérémy Serveaux ◽  
Carl Labergere ◽  
Frédéric Bumbieler ◽  
Khémais Saanouni

Andra, the French national radioactive waste management agency, is in charge of studying the disposal of high-level and long-lived intermediate-level waste (HLW and ILW-LL) in a deep geological repository. According to the reference concept, it is planned to encapsulate high-level waste in non-alloy P285NH steel overpacks before inserting them into horizontal steel cased micro-tunnels. This work is a part of the study about the long-term behavior of a welded steel overpack subjected to external hydrostatic pressure and several localized loading paths. Indeed, the main objective of this work is to develop the most suitable model for non-alloy steel P285NH to be used in the prediction of the long-term overpack behavior. Dealing with a ductile steel, elastoplastic constitutive equations accounting for mixed nonlinear isotropic and kinematic hardening strongly coupled with ductile isotropic damage are adopted. They are formulated based on the classical thermodynamics of irreversible processes framework with state variables at the macroscopic scale, (Germain, 1973) (Lemaitre 1985, Saanouni 2012). In this paper, a new coupling formulation between the scalar isotropic ductile damage and the deviatoric and spherical part of the Cauchy stress and elastic strain tensors is proposed. In order to calibrate the developed model on P285NH steel, multiple tensile tests are performed using classical cylindrical specimens, notched specimens and double notched specimens. In the last part, some experimental fields are measured using digital image correlation. Application is made to a simplified overpack represented by thick walled cylinder subject to compressive loading path. A FEM (Finite Element method) crushing operation of an overpack’s cylindrical part has simulated and analysed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Younes Abed

AbstractThe soil parameters identification procedure is usually a trade-off between sophisticated soil model behaviour and the large number of parameters to identify. Such procedure that can accomplish both of these objectives is highly desirable, but also difficult. This paper presents a methodology for identifying soil parameters that takes into account different constitutive equations. For identifying the generalized Prager model parameters, associated to the Drucker and Prager failure criterion, using an in-situ pressuremeter curve, we have proposed a procedure that is based on an approach of inverse analysis. This approach involves the minimizing the function representing the area between the experimental curve and the simulated curve, obtained by fit in the model along the in-situ loading path. A comparative study between two optimization processes is proposed. The first is based on the technique of the simplex by Nelder and Mead, while the second is based on the decomposition of the pressuremeter curve in three distinct areas. After a brief description of an existing computer program called Press-Sim, which has been written in Fortran for analyzing a cavity expansion using the finite element method, a short explanation is given about the two optimization procedures considered in this article. Then, for a chosen site where soil strength parameters are measured, the comparative study has been performed for both methods at four different depths. For the determination of the angle of friction, the two procedures yield very close values and are in a good agreement with that given by the triaxial test, while for the cohesion, they both diverge from each other on both sides of the value measured by the trial test.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7027
Author(s):  
Stephania Kossman ◽  
Maxence Bigerelle

High–speed nanoindentation rapidly generates large datasets, opening the door for advanced data analysis methods such as the resources available in artificial intelligence. The present study addresses the problem of differentiating load–displacement curves presenting pop-in, slope changes, or instabilities from curves exhibiting a typical loading path in large nanoindentation datasets. Classification of the curves was achieved with a deep learning model, specifically, a convolutional neural network (CNN) model implemented in Python using TensorFlow and Keras libraries. Load–displacement curves (with pop-in and without pop-in) from various materials were input to train and validate the model. The curves were converted into square matrices (50 × 50) and then used as inputs for the CNN model. The model successfully differentiated between pop-in and non-pop-in curves with approximately 93% accuracy in the training and validation datasets, indicating that the risk of overfitting the model was negligible. These results confirmed that artificial intelligence and computer vision models represent a powerful tool for analyzing nanoindentation data.


2021 ◽  
Author(s):  
Cong Han ◽  
Yongpeng Zhuang ◽  
Jing Li

Abstract A new tube axial hydro-pressing method was proposed to solve the problems of high forming pressure and severely uneven wall thickness distribution of traditional tube hydroforming methods to form stepped tubular components. The forming pressure of the traditional hydroforming and the tube axial hydro-pressing method is studied theoretically, the mechanical model of the fillet area is established, and the forming pressure calculation formula is given. Based on this, an investigation of the tube axial hydro-pressing method is carried out by numerical simulation and experimental methods, and compared with the traditional tube hydroforming method. The key to the tube axial hydro-pressing method is to precisely control the relationship between the protrusion height and the axial feed, which is achieved by precisely controlling the feeding pressure and the axial displacement. Therefore, the constant pressure device in the experiment was used to eliminate the influence of the pressure rise caused by the volume compression on its cooperation relationship, to achieve accurate control of the loading path, eliminate wrinkles and flash defects. A qualified workpiece is successfully manufactured when the internal pressure is 18.0 MPa and the feed on each side is 15.0 mm. The forming pressure is reduced by 88.0%, and the feed is increased by 6.5%, which reduces the wall thickness reduction by 9.0%. The wall thickness difference of the workpiece can be controlled within 7.0%. The tube axial hydro-pressing method is suitable for forming stepped tubular components, which can achieve more replenishment at lower pressures, thereby effectively improving the uniformity of wall thickness and significantly reducing the forming pressure.


2021 ◽  
Author(s):  
Sarath Chandran ◽  
Wenqi Liu ◽  
Junhe Lian ◽  
Sebastian Münstermann ◽  
Patricia Verleysen

To assess the effect of stress state and strain rate on damage and fracture of a commercial DP1000 steel with a very fine microstructure, an extensive series of tests were performed. Using finite element simulations, eight different sample geometries, including a dogbone, a central hole, a shear and several notched samples, were designed to achieve both proportional and non-proportional stress states using conventional test benches. Tested at quasi-static, intermediate and, dynamic deformation rates, in total 175 tests were performed. Local strain fields were obtained by digital image correlation. A correction procedure was worked out to eliminate the influence of thermal softening. After testing, scanning electron microscopy was employed to analyse the fracture surfaces. Tests and fractography allowed to draw systematic conclusions on the response of the DP1000 steel. A two-stage strain rate sensitivity of strength is found with a gradually increasing slope at low strain rates and a much steeper rise at high strain rates, which is further amplified at higher triaxiality stress states. The experimentally derived fracture loci revealed a dominant, detrimental impact of the stress triaxiality that is most pronounced at intermediate strain rates. A remarkable, non-monotonic evolution of the fracture strain with strain rate is observed: the highest values were obtained at intermediate rates. Scanning electron microscopy images of the fracture surfaces indicate a void-assisted ductile fracture, though with the occurrence of brittle features triggered at dynamic strain rates. Fracture morphology and dimple features are heavily dependent on stress state, strain rate and loading path.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6703
Author(s):  
Guo-Zheng Quan ◽  
Yan-Ze Yu ◽  
Xue Sheng ◽  
Kun Yang ◽  
Wei Xiong

In order to obtain the desired mechanical properties of products, an innovative method of loading parameter designs for acquiring the desired grain refinement is proposed, and it has been applied in the compression process of Ni80A superalloy. The deformation mechanism maps derived from processing maps based on the Dynamic Materials Model (DMM) theory were constructed, since the critical indicator values corresponding to dynamic recrystallization (DRX) and dynamic recovery (DRV) mechanisms were determined. The processing-parameter domains with DRX mechanisms were separated from the deformation mechanism map, while such domains were chaotic and difficult to apply in innovative parameter loading path design. The speed-loading path derived from strain rate-loading path in a compression process was pursued. The grain refinement domains are discretized into a finite series of sub-domains with clear processing parameters, and the optimal strain rate of each sub-domain is determined by step-by-step finite element simulation. A 3D response surface of the innovative optimal loading path of strain rate was fitted by interpolating methods. Finally, the isothermal compression experiments for Ni80A superalloy were conducted, and the microstructure observations indicated that the desired grain refinement was achieved. This innovative method of parameter loading path design contributes to the microstructure adjustment of the alloys with DRX mechanism.


Sign in / Sign up

Export Citation Format

Share Document