scholarly journals The stress distribution of an elastic body like as threads on which an impact load is applied.

1986 ◽  
Vol 52 (478) ◽  
pp. 1532-1538
Author(s):  
Hideyuki OTAKI
Author(s):  
Hiroshige Matsuoka ◽  
Toshiki Otani ◽  
Shigehisa Fukui

A method to calculate the stress distributions in the elastic body caused by the molecular interactions has been established. The stress distribution was calculated based on the Mindlin’s solution considering the one-dimensional periodic material distribution. The calculation results for a distribution of two materials were presented. The basic characteristics of the stress distribution in the elastic body were quantitatively clarified.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Jincheng Lv ◽  
Shike Zhang ◽  
Xinsheng Yuan

A Green’s function approach is developed for the analytic solution of thick-walled spherical shell under an isotropic impact load, which involves building Green’s function of this problem by using the appropriate boundary conditions of thick-walled spherical shell. This method can be used to analyze displacement distribution and dynamic stress distribution of the thick-walled spherical shell. The advantages of this method are able(1)to avoid the superposition process of quasi-static solution and free vibration solution during decomposition of dynamic general solution of dynamics,(2)to well adapt for various initial conditions, and(3)to conveniently analyze the dynamic stress distribution using numerical calculation. Finally, a special case is performed to verify that the proposed Green’s function method is able to accurately analyze the dynamic stress distribution of thick-walled spherical shell under an isotropic impact load.


Sign in / Sign up

Export Citation Format

Share Document