scholarly journals Relationship between Crack Surface Morphology and Crack Growth Rate under SCCFatigue Interaction.

1993 ◽  
Vol 59 (560) ◽  
pp. 916-921
Author(s):  
Yoshiyuki Kondo
2011 ◽  
Vol 21 (4) ◽  
pp. 49 ◽  
Author(s):  
Hynek Lauschmann ◽  
Ondřej Ráček ◽  
Michal Tůma ◽  
Ivan Nedbal

The reconstitution of the history of a fatigue process is based on the knowledge of any correspondences between the morphology of the crack surface and the velocity of the crack growth (crack growth rate - CGR). The textural fractography is oriented to mezoscopic SEM magnifications (30 to 500x). Images contain complicated textures without distinct borders. The aim is to find any characteristics of this texture, which correlate with CGR. Pre-processing of images is necessary to obtain a homogeneous texture. Three methods of textural analysis have been developed and realized as computational programs: the method based on the spectral structure of the image, the method based on a Gibbs random field (GRF) model, and the method based on the idealization of light objects into a fibre process. In order to extract and analyze the fibre process, special methods - tracing fibres and a database-oriented analysis of a fibre process - have been developed.


2007 ◽  
Vol 567-568 ◽  
pp. 129-132
Author(s):  
Zuzana Sekerešová ◽  
Hynek Lauschmann

Texture of a fatigue crack surface is strictly related to crack growth rate. Cracks in specimens from aluminum alloy were studied. Two types of information were used: SEM images of fracture surfaces, and 3D reconstructions of fracture surface morphologies. Sets of equidistantly focused images obtained by an optical microscope served as the basis for 3D reconstruction. Multiparametric fractal analysis was applied to characterize crack surfaces. A vector of fractal features represented each image or 3D reconstruction of selected locations of fracture surfaces. For estimating fractal characteristics, the box-counting method in 3D was used in all cases, [1]. Multilinear regression was used to express the relation between crack growth rate and feature vectors, with satisfactory results for both crack surface representations.


2021 ◽  
Vol 11 (1) ◽  
pp. 329-338 ◽  
Author(s):  
E. Surojo ◽  
J. Anindito ◽  
F. Paundra ◽  
A. R. Prabowo ◽  
E. P. Budiana ◽  
...  

Abstract Underwater wet welding (UWW) is widely used in repair of offshore constructions and underwater pipelines by the shielded metal arc welding (SMAW) method. They are subjected the dynamic load due to sea water flow. In this condition, they can experience the fatigue failure. This study was aimed to determine the effect of water flow speed (0 m/s, 1 m/s, and 2 m/s) and water depth (2.5 m and 5 m) on the crack growth rate of underwater wet welded low carbon steel SS400. Underwater wet welding processes were conducted using E6013 electrode (RB26) with a diameter of 4 mm, type of negative electrode polarity and constant electric current and welding speed of 90 A and 1.5 mm/s respectively. In air welding process was also conducted for comparison. Compared to in air welded joint, underwater wet welded joints have more weld defects including porosity, incomplete penetration and irregular surface. Fatigue crack growth rate of underwater wet welded joints will decrease as water depth increases and water flow rate decreases. It is represented by Paris's constant, where specimens in air welding, 2.5 m and 5 m water depth have average Paris's constant of 8.16, 7.54 and 5.56 respectively. The increasing water depth will cause the formation of Acicular Ferrite structure which has high fatigue crack resistance. The higher the water flow rate, the higher the welding defects, thereby reducing the fatigue crack resistance.


Sign in / Sign up

Export Citation Format

Share Document