Flame Shape Characteristics of Hydrogen Jet Diffusion Flames in a Cross Flow.

1997 ◽  
Vol 63 (614) ◽  
pp. 3404-3410
Author(s):  
Noboru GOTO ◽  
Saburo YUASA
Author(s):  
M. G. Kibrya ◽  
G. A. Karim

The blowout limit of a jet diffusion flame was shown experimentally to improve significantly through the introduction of an auxiliary fuel in the surrounding air. A small experimental burner was devised so that the auxiliary fuel could be introduced and controlled independently of the main jet fuel, through a number of small pilot jets uniformly distributed around the main central fuel jet. This burner arrangement eliminated the likelihood of a flame flashing back into the surrounding atmosphere and some fuel escaping combustion. The burner was tested with methane as the fuel both for the main jet and the auxiliary side jets. Tests were made for both co-flow and cross-flow air streams of uniform velocity. It is shown that the arrangement adopted for auxiliary fuel introduction produced improvements in the flame blowout limits of the burner under both types of surrounding flow conditions. For the conditions considered, the blowout limits were of higher values in cross flow than for the corresponding co-flowing air streams.


1997 ◽  
Author(s):  
M. Bahadori ◽  
L. Zhou ◽  
D. Stocker ◽  
M. Bahadori ◽  
L. Zhou ◽  
...  

2000 ◽  
Author(s):  
Mark Wernet ◽  
Paul Greenberg ◽  
Peter Sunderland ◽  
William Yanis

2006 ◽  
Vol 145 (3) ◽  
pp. 481-494 ◽  
Author(s):  
Chih-Yung Wu ◽  
Yei-Chin Chao ◽  
Tsarng-Sheng Cheng ◽  
Yueh-Heng Li ◽  
Kuo-Yuan Lee ◽  
...  

2014 ◽  
Vol 745 ◽  
pp. 647-681 ◽  
Author(s):  
Yee Chee See ◽  
Matthias Ihme

AbstractLocal linear stability analysis has been shown to provide valuable information about the response of jet diffusion flames to flow-field perturbations. However, this analysis commonly relies on several modelling assumptions about the mean flow prescription, the thermo-viscous-diffusive transport properties, and the complexity and representation of the chemical reaction mechanisms. In this work, the effects of these modelling assumptions on the stability behaviour of a jet diffusion flame are systematically investigated. A flamelet formulation is combined with linear stability theory to fully account for the effects of complex transport properties and the detailed reaction chemistry on the perturbation dynamics. The model is applied to a methane–air jet diffusion flame that was experimentally investigated by Füriet al.(Proc. Combust. Inst., vol. 29, 2002, pp. 1653–1661). Detailed simulations are performed to obtain mean flow quantities, about which the stability analysis is performed. Simulation results show that the growth rate of the inviscid instability mode is insensitive to the representation of the transport properties at low frequencies, and exhibits a stronger dependence on the mean flow representation. The effects of the complexity of the reaction chemistry on the stability behaviour are investigated in the context of an adiabatic jet flame configuration. Comparisons with a detailed chemical-kinetics model show that the use of a one-step chemistry representation in combination with a simplified viscous-diffusive transport model can affect the mean flow representation and heat release location, thereby modifying the instability behaviour. This is attributed to the shift in the flame structure predicted by the one-step chemistry model, and is further exacerbated by the representation of the transport properties. A pinch-point analysis is performed to investigate the stability behaviour; it is shown that the shear-layer instability is convectively unstable, while the outer buoyancy-driven instability mode transitions from absolutely to convectively unstable in the nozzle near field, and this transition point is dependent on the Froude number.


Sign in / Sign up

Export Citation Format

Share Document