A Study of the Fluid Force due to Side Wind on a Railroad Car by Three-Dimensional Discrete Vortex Method.

2000 ◽  
Vol 66 (644) ◽  
pp. 1021-1028
Author(s):  
Michihisa TSUTAHARA ◽  
Yujiro TATSUMI ◽  
Tatsuo MAEDA ◽  
Minoru SUZUKI
Author(s):  
Mohammad Hajiarab ◽  
J. Michael R. Graham ◽  
Martin Downie

This paper describes a theoretical approach to predict roll damping for a three-dimensional barge shaped vessel in the frequency domain by matching a simple discrete vortex method (DVM), describing local separated flow, to an inviscid 3-D seakeeping code. The results are compared with model test experiments to demonstrate validity of the method. A good agreement between the model test RAO and the damped RAO is achieved.


1997 ◽  
Vol 119 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Kideok Ro ◽  
Michihisa Tsutahara

The three-dimensional flows in the Weis-Fogh mechanism are studied by flow visualization and numerical simulation by a discrete vortex method. In this mechanism, two wings open, touching their trailing edges (fling), and rotate in opposite directions in the horizontal plane. At the “fling” stage, the flow separates at the leading edge and the tip of each wing. Then they rotate, and the flow separates also at the trailing edges. The structure of the vortex systems shed from the wings is very complicated and their effect on the forces on the wings have not yet been clarified. Discrete vortex method, especially the vortex stick method, is employed to investigate the vortex structure in the wake of the two wings. The wings are represented by lattice vortices, and the shed vortices are expressed by discrete three-dimensional vortex sticks. In this calculation, the GRAPE3A hardware is used to calculate at high speed the induced velocity of the vortex sticks and the viscous diffusion of fluid is represented by the random walk method. The vortex distributions and the velocity field are calculated. The pressure is estimated by the Bernoulli equation, and the lift and moment on the wing are also obtained. However, the simulations, especially those for various Reynolds numbers, should be treated with caution, because there is no measurement to compare them with and the discrete vortex method is approximate due to rudimentary modeling of viscosity.


1989 ◽  
Vol 9 (34) ◽  
pp. 273-276
Author(s):  
Takeyoshi Kimura ◽  
Michihisa Tsutahara ◽  
Zhong-yi Wang ◽  
Hiroshi Ishii

Sign in / Sign up

Export Citation Format

Share Document