induced velocity
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 43)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 11 (4) ◽  
pp. 1-18
Author(s):  
Q. Bai ◽  
H. Konietzky

This contribution proposes a numerical microstructural modeling approach to investigate stress-induced seismic velocity changes on anisotropic rocks. By introducing pre-existing cracks with preferential orientations in bonded-particle assemblies, the transverse isotropic structure of the Whitby Mudstone is simulated. Using power-law distributed aperture and calibrated micro-properties, we successfully reproduce stress-dependent velocity changes on Whitby Mudstones with different anisotropic angles in relation to the applied loads. The proposed model also duplicates the directional dependence of wave speed with respect to the bedding plane as expected theoretically. The numerical models show that velocity increase results from the closure of pre-existing cracks due to load increase. Direct relations are established between velocity changes and opened crack density (or crack closure), which displays a similar tendency compared with theoretical predictions. This relation can be used to quantify the micromechanisms behind the velocity changes. The proposed model provides the ability to directly examine the micro-processes underlying velocity changes.


2021 ◽  
Vol 44 (11) ◽  
Author(s):  
E. J. Avital ◽  
T. Miloh

Abstract An analytic framework is presented for calculating the self-induced thermophoretic velocity of a laser-heated Janus metamaterial micro-particle, consisting of two conducting hemispheres of different thermal and electric conductivities. The spherical Janus is embedded in a quiescent fluid of infinite expanse and is exposed to a continuous light irradiation by a defocused laser beam. The analysis is carried under the electrostatic (Rayleigh) approximation (radius small compared to wavelength). The linear scheme for evaluating the temperature field in the three phases is based on employing a Fourier–Legendre approach, which renders rather simple semi-analytic expressions in terms of the relevant physical parameters of the titled symmetry-breaking problem. In addition to an explicit solution for the self-thermophoretic mobility of the heated Janus, we also provide analytic expressions for the slip-induced Joule heating streamlines and vorticity field in the surrounding fluid, for a non-uniform (surface dependent) Soret coefficient. For a ‘symmetric’ (homogeneous) spherical particle, the surface temperature gradient vanishes and thus there is no self-induced thermophoretic velocity field. The ‘inner’ temperature field in this case reduces to the well-known solution for a laser-heated spherical conducting colloid. In the case of a constant Soret phoretic mobility, the analysis is compared against numerical simulations, based on a tailored collocation method for some selected values of the physical parameters. Also presented are some typical temperature field contours and heat flux vectors prevailing in the two-phase Janus as well as light-induced velocity and vorticity fields in the ambient solute and a new practical estimate for the self-propelling velocity. Graphic abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hang Zhu ◽  
Zihao Jiang ◽  
Hang Zhao ◽  
Siyu Pei ◽  
Hongze Li ◽  
...  

Analyzing the propeller aerodynamic performance is of vital importance for research and improvement of unmanned aerial vehicles. This paper presents the design requirements for a propeller for rotorcraft unmanned aerial vehicles and an analysis of a model for calculating propeller aerodynamic performance. Based on blade element momentum theory, the aerodynamic force of a blade element is analyzed and used. The symmetric airfoil NACA 0012 is used as an example to verify the validity of the model. An experimental system for propeller aerodynamic performance is designed and built to test the aerodynamic performance of six types of the propeller from a single manufacturer (APC). Data-processing software is also developed to draw curves and perform single-step calculations of three propellers’ parameters: airfoil resistance power, induced velocity, and efficiency. The results of the experiment indicate that both the thrust and torque of the propeller increase with rotational speed, propeller diameter, and propeller pitch. The research is of great significance to select more suitable propellers for unmanned aerial vehicles and the further improvement of the performance of unmanned aerial vehicles’ dynamical system.


2021 ◽  
Vol 14 (4) ◽  
pp. 181
Author(s):  
Yuri Mikhailovich Ignatkin ◽  
Pavel Vyacheslavovich Makeev ◽  
Alexander Ivanovich Shomov ◽  
Valery Andreevich Ivchin

2021 ◽  
Vol 11 (14) ◽  
pp. 6576
Author(s):  
James Agbormbai ◽  
Weidong Zhu ◽  
Liang Li

Currently, the actuator disk theory (ADT) and the rotating annular stream-tube theory (RAST), both of which predicate on the axial momentum and generalized momentum theories, among others, are commonly used in investigating the aerodynamic characteristics of horizontal axis wind turbines (HAWTs). These theories, which are based on a rotor with an infinite number of blades, typically do not properly capture the flow physics of wind blowing past the rotors of HAWTs. A vortex ring theory (VRT) that analyzes HAWTs based solely on the characteristics of fluids flowing past obstructions is proposed. The VRT is not predicated on the assertion that the induced velocity in the wake is twice the induced velocity at the rotor. On the contrary, it splits the axial induction factor in the wake into two components, namely, the induction or interference factor due to the solidity of the rotor and the induction factor due to the wake of the rotor aw; aw and its azimuthal counterpart are determined using the Biot–Savart law. The pressure differences across the rotor segments of a HAWT are derived from the Bernoulli equation for all the three theories. Blade segment/local areas based on the blade sectional geometry of the rotor are used in the case of the VRT to estimate the local forces. All the calculations in this study are based on the design parameters of the 5MW National Renewable Energy Laboratory’s reference offshore wind turbine. Pressure differences are plotted as functions of local radii using the calculated axial and azimuthal induction factors for each theory. The local power coefficient is plotted as a function of the local tip-speed ratio, while the local thrust coefficient is plotted as a function of the local radii for all the three theories. There is piece-wise agreement between the VRT, the ADT, the RAST and numerical and experimental data available in the literature.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3632
Author(s):  
Sylvain Badie ◽  
Rimy Gabriel ◽  
Doris Sebold ◽  
Robert Vaßen ◽  
Olivier Guillon ◽  
...  

Near-net shape components composed of monolithic Ti2AlC and composites thereof, containing up to 20 vol.% Al2O3 fibers, were fabricated by powder injection molding. Fibers were homogeneously dispersed and preferentially oriented, due to flow constriction and shear-induced velocity gradients. After a two-stage debinding procedure, the injection-molded parts were sintered by pressureless sintering at 1250 °C and 1400 °C under argon, leading to relative densities of up to 70% and 92%, respectively. In order to achieve near-complete densification, field assisted sintering technology/spark plasma sintering in a graphite powder bed was used, yielding final relative densities of up to 98.6% and 97.2% for monolithic and composite parts, respectively. While the monolithic parts shrank isotropically, composite assemblies underwent anisotropic densification due to constrained sintering, on account of the ceramic fibers and their specific orientation. No significant increase, either in hardness or in toughness, upon the incorporation of Al2O3 fibers was observed. The 20 vol.% Al2O3 fiber-reinforced specimen accommodated deformation by producing neat and well-defined pyramidal indents at every load up to a 30 kgf (~294 N).


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yubiao Jiang ◽  
Wanbo Wang ◽  
Chen Qin ◽  
Patrick N. Okolo ◽  
Kun Tang

The characteristics and control of a wingtip vortex are of great significance when considering drag reduction and flight safety of transportation aircrafts. The associated aerodynamic phenomenon resulting from rolling up of a wingtip vortex includes boundary layer flow, shear layer separation, and vortex breakdown, while the interaction of a wingtip vortex with the airframe causes induced drag, wingtip noise, etc. This paper studies a normal blowing method utilized to control the wingtip vortex. Large eddy simulation (LES) technique applied to a straight NACA0012 wing having a chord length ( c ) of 0.4 m is adopted for this study. The Reynolds number based on the chord length is 1.6 × 10 6 and the angle of attack is 12°. The computational approach utilized the dynamic Smagorinsky-Lilly subgrid model for 3D simulations. Normal blowing from a high aspect ratio jet from the wingtip lower surface was used to control the wingtip vortex. From 0.05c to 0.30c, the blowing slit width was 1 mm, with the slit exit treated as a velocity inlet boundary condition which supplied the blowing jet with a momentum coefficient of 0.28%. Results of axial velocity and span-wise pressure distribution of the clean airfoil presented good agreement with known experimental data. LES results indicate that normal blowing suppresses the primary vortex strength, while the vortex core radius, maximum induced velocity, axial vorticity flux, and pressure peak of the primary vortex are reduced by 25%, 28%, 46%, and 52%, respectively. Flow field structures before and after blowing show that blowing suppresses the shedding, coiling, and convergence of the free vortex layers near the primary vortex. This study also shows that normal blowing generates a jet-induced vortex at the location of the secondary vortex, while backflow, volume expansion, and spiral burst can be observed in the jet-induced vortex. The bursting jet-induced vortex destroys the jet-like flow structure of the primary vortex at the trailing edge.


2021 ◽  
Vol 120 ◽  
pp. 110360
Author(s):  
Gordon J. Alderink ◽  
Tom Kepple ◽  
Steven J. Stanhope ◽  
Arnel Aguinaldo

Sign in / Sign up

Export Citation Format

Share Document