scholarly journals The Response of Tilted Vibration System with a Pendulum Type Dynamic Vibration Absorber (1st Report, Single Pendulum)

2004 ◽  
Vol 70 (689) ◽  
pp. 1-7
Author(s):  
Yilin SONG ◽  
Hidenori SATO ◽  
Yoshio IWATA ◽  
Toshihiko KOMATSUZAKI
Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5127
Author(s):  
Leif Kari

Tough, doubly cross-linked, single polymer network hydrogels with both chemical and physical cross-links display a high loss factor of the shear modulus over a broad frequency range. Physically, the high loss factor is resulting from the intensive adhesion–deadhesion activities of the physical cross-links. A high loss factor is frequently required by the optimization processes for optimal performance of a primary vibration system while adopting a dynamic vibration absorber, in particular while selecting a larger dynamic vibration absorber mass in order to avoid an excess displacement amplitude of the dynamic vibration absorber springs. The novel idea in this paper is to apply this tough polymer hydrogel as a dynamic vibration absorber spring material. To this end, a simulation model is developed while including a suitable constitutive viscoelastic material model for doubly cross-linked, single polymer network polyvinyl alcohol hydrogels with both chemical and physical cross-links. It is shown that the studied dynamic vibration absorber significantly reduces the vibrations of the primary vibration system while displaying a smooth frequency dependence over a broad frequency range, thus showing a distinguished potential for the tough hydrogels to serve as a trial material in the dynamic vibration absorbers in addition to their normal usage in tissue engineering.


2004 ◽  
Vol 2004 (0) ◽  
pp. _149-1_-_149-6_
Author(s):  
Yilin SONG ◽  
Hidenori SATO ◽  
Yoshio IWATA ◽  
Toshihiko KOMATSZAKI ◽  
Yoshiyuki KISHIMOTO

Author(s):  
Zhang Pandeng ◽  
Liu Zhao ◽  
Zhang Tianfei ◽  
Zhu Yutian ◽  
Zheng Changlong ◽  
...  

Vibration causes problems, and the technology of dynamic vibration absorber is always used to control it. So far, the technology is mature, but based on the known of modes, mass, stiffness, damping and other parameters of the vibration system. For an unknown system or complicated system, how to use this technology is what the paper mainly discusses. The dynamic vibration absorber of this paper is a single-degree-of-freedom, and only one direction is to be controlled. The evaluation function is the ratio between the system vibration response after adding dynamic vibration absorber and the original exciting force, which can reflect the effect of dynamic vibration absorber. After separating the unknown system and the dynamic vibration absorber, based on force analysis, we analyze them separately and deduce the calculating formula of the evaluation function. The order of parameters to be determined is mass, stiffness, and damping. Flow chart is presented on how to use the method. The method is validated by a known system of two degree-of-freedom vibration system. The main innovation of this paper is to propose a method of predicting the effect of adding a single-degree-of-freedom dynamic vibration absorber to an unknown system to control a certain direction. This method doesn’t need to consider the system damping factor. This paper extends the scope of technology application of dynamic vibration absorber.


2003 ◽  
Vol 2003.40 (0) ◽  
pp. 175-176
Author(s):  
Takafumi YAMADA ◽  
Hidenori SATO ◽  
Yoshio IWATA ◽  
Toshihiko KOMATSUZAKI ◽  
Yilin SONG ◽  
...  

2019 ◽  
Vol 52 (15) ◽  
pp. 531-536
Author(s):  
Takeshi Mizuno ◽  
Takahito Iida ◽  
Yuji Ishino ◽  
Masaya Takasaki ◽  
Daisuke Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document