scholarly journals The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates

2018 ◽  
Vol 7 (12) ◽  
pp. 639-649 ◽  
Author(s):  
A. R. MacLeod ◽  
G. Serrancoli ◽  
B. J. Fregly ◽  
A. D. Toms ◽  
H. S. Gill

Objectives Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. Materials and Methods A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix). Results For both plate types, long spans increased IFM but did not substantially alter peak plate stress. The custom plate increased axial and shear IFM values by up to 24% and 47%, respectively, compared with the TomoFix. In all cases, a callus stiffness of 528 MPa was required to reduce plate stress below the fatigue strength of titanium alloy. Conclusion We demonstrate that larger bridging spans in opening wedge HTO increase IFM without substantially increasing plate stress. The results indicate, however, that callus healing is required to prevent fatigue failure. Cite this article: A. R. MacLeod, G. Serrancoli, B. J. Fregly, A. D. Toms, H. S. Gill. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 2018;7:639–649. DOI: 10.1302/2046-3758.712.BJR-2018-0035.R1.

2005 ◽  
Vol 33 (10) ◽  
pp. 1552-1557 ◽  
Author(s):  
Bruce S. Miller ◽  
William O. P. Dorsey ◽  
Cari R. Bryant ◽  
John C. Austin

Background Medial opening wedge high tibial osteotomy is gaining popularity as a treatment option for medial compartment degenerative disease in the young, active patient. One of the potential technical pitfalls of this procedure is inadvertent disruption of the lateral tibial cortex during distraction at the osteotomy site. Purpose (1) To investigate the effect of lateral cortex disruption on stability during medial opening wedge high tibial osteotomy and (2) to evaluate 3 different methods of repair of the disrupted lateral cortex. Study Design Controlled laboratory study. Methods A total of 50 validated replicate tibias were evaluated in a medial opening wedge high tibial osteotomy model. Specimens were divided into 5 groups: (1) control, or intact lateral cortex (n = 10); (2) disrupted lateral cortex (n = 10); (3) lateral cortex repaired with 1 staple (n = 10); (4) lateral cortex repaired with 2 staples (n = 10); and (5) lateral cortex repaired with a periarticular plate and screws (n = 10). Specimens were placed in compression and torsion under physiologic loads, and stiffness and micromotion were calculated. Results Disruption of the lateral cortex resulted in a 58% reduction in axial stiffness and a 68% reduction in torsional stiffness compared to control specimens (P<. 05). Disruption of the lateral cortex also resulted in increased micromotion at the osteotomy site. All 3 methods of repair of the lateral cortex restored stiffness and micromotion values to those of the control group (P<. 05). Conclusions Instability at the osteotomy site may contribute to the high rate of delayed union or nonunion associated with medial opening wedge high tibial osteotomy. Repair of the lateral tibial cortex by each of these techniques restored stability to the osteotomy site in this replicate tibia model and might be effective in clinical use. However, more studies are needed to further explore the relationship between lateral cortex disruption and patient outcomes in the clinical setting before definitive conclusions can be drawn.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247412
Author(s):  
Jesse Chieh-Szu Yang ◽  
Kuan-Yu Lin ◽  
Hsi-Hsien Lin ◽  
Oscar K. Lee

Background/Objective High tibial osteotomy (HTO) is a common treatment for medial knee arthrosis. However, a high rate of complications associated with a plate and a significant loss of correction have been reported. Therefore, an internal support block (ISB) is designed to enhance the initial stability of the fixation device that is important for successful bone healing and maintenance of the correction angle of the osteotomy site. The purpose of this study was performed to examine if an internal support block combined with a plate reduces the stress on the plate and screw area. Methods Finite element models were reconstructed following three different implant combinations. Two loading conditions were applied to simulate standing and initial sit-to-stand postures. Data analysis was conducted to evaluate the axial displacement of the posteromedial tibial plateau, which represents the loss of the posteromedial tibial plateau in clinical observation. Moreover, the stresses on the bone plate and locking screws were evaluated. Results Compared to the TomoFix plate, the ISB reduced the axial displacement by 73% and 76% in standing and initial sit-to-stand loading conditions, respectively. The plate with an ISB reduced stress by 90% on the bone plate and by 73% on the locking screw during standing compared to the standalone TomoFix plate. During the initial sit-to-stand loading condition, the ISB reduced the stress by 93% and 77% on the bone plate and the locking screw, respectively. Conclusion The addition of the PEEK block showed a benefit for structural stability in the osteotomy site. However, further clinical trials are necessary to evaluate the clinical benefit of reduced implant stress and the internal support block on the healing of the medial bone tissue.


Author(s):  
Zahra Hayatbakhsh ◽  
Farzam Farahmand

Locking plates have threaded holes, in which threaded-head screws are affixed. Hence, they do not need to be in intimate contact with underlying bone to provide fixation. There are, however, reports that a large distance between the plate and the bone might cause clinical complications such as delayed union or nonunion, screw pull out, and screw and plate breakage. Considering the diversity in the capabilities and costs of different plate customization techniques, the purpose of this study was to investigate the effect of the plate contouring quality on the biomechanical performance of high tibial osteotomy (HTO) fixation. A finite element model of proximal tibia was developed in Abaqus, using the QCT data of a cadaver. The model was then subjected to open-wedge HTO (correction angle 12°) with TomoFix plate fixation. The sagittal curvature of the plate was changed parametrically to provide certain levels of geometrical fit, and the biomechanical performance parameters of fixation were assessed. Results indicated 5%, 9% and 38% increase in the stiffness of the construct, and the von Mises stress in the plate and locking screw just above the osteotomy site, respectively, when the level of fit of plate changed from 0% (initial non-contoured initial shape) to 100% (fully adapted shape). The same change decreased the pressure at the lateral hinge of the osteotomy by 61%, and the mean of the tensile stress on the screw shaft by 12%. It was concluded that the level of fit has conflicting effects on the biomechanical parameters of the HTO fixation system, that is, the structural stiffness, the pressure at the lateral hinge, the stresses in the plate and screws, and the pull out resistance of the screws. In particular, for HTO patients with high quality bone, the optimal level of fit should provide a tradeoff between these parameters.


2014 ◽  
Vol 2 (11_suppl3) ◽  
pp. 2325967114S0016
Author(s):  
Faik Türkmen ◽  
Cem Sever ◽  
Burkay Kutluhan Kacıra ◽  
Mehmet Demirayak ◽  
Mehmet Ali Acar ◽  
...  

Objectives: Medial opening-wedge high tibial osteotomy (MOWHTO) is an effective surgical procedure for patients who have medial compartmental osteoarthritis of the knee with varus deformity of the limb. The abnormal load on the medial compartment of the knee relocates to the lateral compartment with this procedure. A gap occurs on the proximal tibia during the correction of varus deformity. Filling this gap with bone grafts or synthetic materials has gained wide acceptance for preventing nonunion or osteotomy site collapse. The aim of this study is to report our results of MOWHTOs performed without any bone graft or any other synthetic materials. Methods: We evaluated 41 MOWHTOs performed between 2009 and 2012 with no use of bone grafts, synthetic materials or spacers. Age of the patients ranged from 43 to 67. Thirty five of the patients were female and 3 of them were male. The follow-up time was 6 months. Results: There were no any non-unions or loss of correction. The mean bone union time was 12,8 weeks. No major complications were seen. Conclusion: The results of our study has shown that achieve satisfactory results can be obtained in MOWHTO without using any bone graft, synthetic materials or spacer.


2020 ◽  
Vol 8 (6) ◽  
pp. 232596712092360
Author(s):  
Chaiwat Chuaychoosakoon ◽  
Wachiraphan Parinyakhup ◽  
Atichart Kwanyuang ◽  
Yada Duangnumsawang ◽  
Boonsin Tangtrakulwanich ◽  
...  

Background: Opening-wedge valgus high tibial osteotomy (OWHTO) is a common surgical procedure used to treat symptomatic varus femorotibial malalignment in adults. Several intraoperative methods are available to determine the correct correction alignment, but achieving the desired alignment correction is difficult. Purpose/Hypothesis: The aim of this study was to assess a 4-reference K-wire technique that is relatively easy to apply and can reliably assess actual alignment correction during surgery after determination of the desired corrective angle. We hypothesized that this technique would accurately determine the coronal correction and properly maintain the tibial slope intraoperatively during OWHTO. Study Design: Descriptive laboratory study. Methods: This study was conducted using 12 fresh-frozen cadavers; 12 randomly chosen knees were corrected 5° and 12 knees were corrected 10° by use of 2 coronal and 2 sagittal K-wires. The first and second coronal K-wires were drilled at 4 cm and 1 to 2 cm below the medial joint line toward the tibiofibular joint, respectively. The angles of these 2 coronal K-wires were measured before and after the gap was opened via a modified goniometer. The difference in the angle formed by these 2 coronal K-wires from before to after opening of the gap was the alignment correction angle. In addition, 2 sagittal K-wires were drilled parallel to each other before the gap opening above and below the osteotomy site. Ensuring that these 2 sagittal K-wires remained parallel after the gap opening confirmed that the tibial slope had been maintained. The paired t test was used to compare the desired alignment corrections and the different angles measured between the pre- and postoperative radiographic alignments. Results: The mean ± SD differences in angles between the pre- and postoperative alignments of the 5° and 10° corrections were 5.04° ± 0.68° and 10.03° ± 0.68°, respectively, indicating no statistically significant differences between pre- and postoperative alignment in both groups. As well, no significant difference was noted between the pre- and postoperative medial tibial slope ( P = .54). Conclusion: The coronal alignment correction and maintenance of the tibial slope using the 4-reference K-wire technique was found to be highly accurate and reliable. Clinical Relevance: Achieving the correct angle in OWHTO is difficult, and the 4-reference K-wire technique provides an easier and more reliable way to obtain the correct angle. This technique can be used in most hospital settings, with no need for expensive equipment.


Sign in / Sign up

Export Citation Format

Share Document