scholarly journals Long-term bone remodelling around ‘legendary’ cementless femoral stems

2018 ◽  
Vol 3 (2) ◽  
pp. 45-57 ◽  
Author(s):  
Charles Rivière ◽  
Guido Grappiolo ◽  
Charles A. Engh ◽  
Jean-Pierre Vidalain ◽  
Antonia-F. Chen ◽  
...  

Bone remodelling around a stem is an unavoidable long-term physiological process highly related to implant design. For some predisposed patients, it can lead to periprosthetic bone loss secondary to severe stress-shielding, which is thought to be detrimental by contributing to late loosening, late periprosthetic fracture, and thus rendering revision surgery more complicated. However, these concerns remain theoretical, since late loosening has yet to be documented among bone ingrowth cementless stems demonstrating periprosthetic bone loss associated with stress-shielding. Because none of the stems replicate the physiological load pattern on the proximal femur, each stem design is associated with a specific load pattern leading to specific adaptive periprosthetic bone remodelling. In their daily practice, orthopaedic surgeons need to differentiate physiological long-term bone remodelling patterns from pathological conditions such as loosening, sepsis or osteolysis. To aid in that process, we decided to clarify the behaviour of the five most used femoral stems. In order to provide translational knowledge, we decided to gather the designers’ and experts’ knowledge and experience related to the design rationale and the long-term bone remodelling of the following femoral stems we deemed ‘legendary’ and still commonly used: Corail (Depuy); Taperloc (Biomet); AML (Depuy); Alloclassic (Zimmer); and CLS-Spotorno (Zimmer).Cite this article: EFORT Open Rev 2018;3:45-57. DOI: 10.1302/2058-5241.3.170024

2021 ◽  
Author(s):  
Pouria Tavakkoli Avval

Periprosthetic bone loss following orthopedic implantations is a serious concern leading to the premature failure of the implants. Therefore, investigating bone remodeling in response to orthopedic implantations is of paramount importance for the purpose of designing long lasting prostheses. In this study, a predictive bone remodeling model (Thermodynamic-based model) was employed to simulate the long-term response of femoral density to total hip arthroplasty (THA), bone fracture plating and intramedullary (IM) nailing. The ability of the model in considering the coupling effect between mechanical loading and bone biochemistry is its unique characteristic. This research provided quantitative data for monitoring bone density changes throughout the femoral bone. The results obtained by the thermodynamic-based model agreed well with the bone morphology and the literature. The study revealed that the most significant periprosthetic bone loss in response to THA occurred in calcar region (Gruen zone 7). Conversely, the region beneath the hip stem (Gruen zone 4) experienced the lowest bone mineral density (BMD) changes. It was found that the composite hip implant and IM nail were more advantageous over the metallic ones as they induced less stress shielding and provided more uniform bone density changes following the surgery. The research study also showed that, due to plating, the areas beneath the bone fracture plate experienced severe bone loss. However, some level of bone formation was observed at the vicinity of the most proximal and distal screw holes in both lateral and anterior plated femurs. Furthermore, in terms of long-term density distributions, the anterior plating was not superior to the lateral plating.


2019 ◽  
Vol 30 (6) ◽  
pp. 731-738
Author(s):  
Bernhard Flatøy ◽  
Jon Dahl ◽  
Stephan Maximilian Röhrl ◽  
Lars Nordsletten

Background: Periprosthetic bone remodelling may increase fracture risk and deplete bone stock around hip implants. These changes are in part caused by implant design, advocating an early evaluation of bone remodelling properties of new implants. This can be done by repeated dual-energy x-ray absorptiometry (DXA) measurements. We know that radiopaque cement falsely elevates bone mineral density (BMD) in single measurements, however, its impact on repeated measurements, i.e. BMD changes is unexplored. We have therefore investigated whether the presence of radiopaque cement affect repeated BMD measurements. Methods: 33 patients eligible for total hip replacement were randomly assigned to either radiopaque or radiolucent cement. BMD changes up to 12 months were measured by DXA, in addition to Harris Hip Score, plain radiographs and radiostereometric analysis (RSA). Results: Periprosthetic BMD declined during the first 3–6 months in all zones in both groups. The greatest reduction (14%) was seen in the proximal Gruen zones (1 and 7). We found a significant difference in Gruen zones 1 and 2, where the measured bone loss was higher in the radiolucent cement group. Conclusions: The presence of radiopaque agents in bone cement may influence DXA measurements of bone remodelling. ClinicalTrials.gov identifier NCT00473421.


2020 ◽  
pp. postgradmedj-2019-137120
Author(s):  
Xi Chen ◽  
Yu Shen ◽  
Chenyi Ye ◽  
Yishake Mumingjiang ◽  
Jinwei Lu ◽  
...  

ObjectivesThe aim of this study was to evaluate the effect of antiosteoporotic drugs on preventing periprosthetic bone loss in calcar 6 and 12 months after total hip arthroplasty.MethodsThe network meta-analysis was conducted guided by the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guideline. A systematic literature search was conducted and 21 studies that enrolled a total of 955 patients with 9 antiosteoporotic drugs met the inclusion criteria. Network meta-analysis and conventional meta-analysis were carried out for calculating standard mean difference (SMD) and the surface under cumulative ranking curve (SUCRA) of the bone mineral density (BMD) in calcar (Gruen zone 7) as well as bone turnover markers (BTMs) including bone-specific alkaline phosphatase (BSAP) and collagen type I cross-linked N telopeptide (NTX) at 6 and 12 months between different antiosteoporotic drugs.ResultsAt 6 months after total hip arthroplasty, zoledronate (SUCRA=86.4%), risedronate (SUCRA=51.3%) and etidronate (SUCRA=44.5%) were effective in retaining BMD in calcar; zoledronate was significantly more effective than etidronate (SMD=0.65, 95% CI 0.03 to 1.27). Teriparatide (SUCRA=84.5%), denosumab (SUCRA=82.5%), zoledronate (SUCRA=69.2%), alendronate+alfacalcidol (SUCRA=66.2%) and etidronate (SUCRA=51.5%) were the top five drugs in retaining BMD in calcar at 12 months after total hip arthroplasty and the efficacy were comparable. After simultaneously excluding studies in which the prosthesis were cement and the drug dosages as well as treatment durations were inconsistent with those in treating osteoporosis, the above results were robust with the exception that alendronate showed significant efficacy compared with placebo (SMD=1.22, 95% CI 0.46 to 1.99) and was comparable with those effective drugs at 12 months. Long-term residual effect was corroborated only in etidronate, alendronate and zoledronate from previous studies. BTMs were significantly decreased as early as 6 months (SMD of BSAP −0.49, 95% CI −0.84 to −0.13; SMD of NTX −0.93, 95% CI −1.21 to −0.64) and sustained until 12 months (SMD of BSAP −0.27, 95% CI −0.50 to −0.03; SMD of NTX −0.84, 95% CI −1.11 to −0.56) during the prophylaxis.ConclusionsAntiosteoporotic drugs showed prophylactic efficacy on periprosthetic bone loss after total hip arthroplasty in calcar, the effectiveness varied. Zoledronate was the best recommendation due to its optimal efficacy both within 6 and 12 months as well as its residual effect in the long term. BTMs could be used as indicators for monitoring through the treatment. More head-to-head clinical trials are needed to confirm those findings.


Author(s):  
Souptick Chanda ◽  
Kaushik Mukherjee ◽  
Sanjay Gupta ◽  
Dilip Kumar Pratihar

The stem–bone interface of cementless total hip arthroplasty undergoes an adaptive process of bone ingrowth until the two parts become osseointegrated. Another important phenomenon associated with aseptic loosening of hip stem is stress-shielding induced adverse bone remodelling. The objective of this study was to preclinically assess the relative performances of two distinct designs of hip stems by addressing the combined effect of bone remodelling and osseointegration, based on certain rule-based criteria obtained from the literature. Premised upon non-linear finite element analyses of patient-specific implanted femur models, the study attempts to ascertain in silico outcome of the hip stem designs based on an evolutionary interfacial condition, and to further comment on the efficacy of the rule-based technique on the prediction of peri-prosthetic osseointegration. One of the two hip stem models was a trade-off design obtained from an earlier shape optimization study, and the other was based on TriLock stem (DePuy). Both designs predicted similar long-term osseointegration (∼89% surface), although trade-off stem predicted higher post-operative osseointegration. Proximal bone resorption was found higher for TriLock (by ∼110%) as compared to trade-off model. The rule-based technique predicted clinically coherent osseointegration around both stems and appears to be an alternative to expensive mechanobiology-based schemes.


2022 ◽  
pp. 206-211
Author(s):  
Andreas Nyström ◽  
Demostenis Kiritopoulos ◽  
Hans Mallmin ◽  
Stergios Lazarinis

Background and purpose — We previously described a decrease in bone mineral density (BMD) in the calcar region 2 years after insertion of the collum femoris-preserving (CFP) stem, but the implants were stable. Now we have examined the long-term changes in periprosthetic BMD and stability of the CFP stem. Patients and methods — We conducted a minimum 8-year follow-up of 21 patients from our original investigation. We examined periprosthetic BMD by dual-energy X-ray absorptiometry (DEXA) and implant stability by radiostereometric analysis (RSA). Results — Between 2 and 8 years 1 stem was revised due to aseptic loosening. Between 2 and 8 years we found a 14% (95% confidence interval [CI] 9–19) reduction in BMD in Gruen zone 6 and 17% (CI 6–28) in Gruen zone 7. From baseline the reduction in BMD was 30% (CI 23–36) in Gruen zone 6, 39% (CI 31–47) in Gruen zone 7, and 19% (CI 14–23) in Gruen zone 2. Between 2 and 8 years, RSA (n = 17) showed a mean translation along the stem axis of 0.02mm (CI –0.02 to 0.06) and a mean rotation around the stem axis of 0.08° (CI –0.26 to 0.41). From baseline mean subsidence was 0.07 mm (CI –0.16 to 0.03) and mean rotation around the stem axis was 0.23° (CI –0.23 to 0.68) at 8 years. Interpretation — There was continuous loss of proximomedial BMD at 8 years while the CFP stem remained stable. Proximal periprosthetic bone loss cannot be prevented by this stem.


2021 ◽  
Author(s):  
Pouria Tavakkoli Avval

Periprosthetic bone loss following orthopedic implantations is a serious concern leading to the premature failure of the implants. Therefore, investigating bone remodeling in response to orthopedic implantations is of paramount importance for the purpose of designing long lasting prostheses. In this study, a predictive bone remodeling model (Thermodynamic-based model) was employed to simulate the long-term response of femoral density to total hip arthroplasty (THA), bone fracture plating and intramedullary (IM) nailing. The ability of the model in considering the coupling effect between mechanical loading and bone biochemistry is its unique characteristic. This research provided quantitative data for monitoring bone density changes throughout the femoral bone. The results obtained by the thermodynamic-based model agreed well with the bone morphology and the literature. The study revealed that the most significant periprosthetic bone loss in response to THA occurred in calcar region (Gruen zone 7). Conversely, the region beneath the hip stem (Gruen zone 4) experienced the lowest bone mineral density (BMD) changes. It was found that the composite hip implant and IM nail were more advantageous over the metallic ones as they induced less stress shielding and provided more uniform bone density changes following the surgery. The research study also showed that, due to plating, the areas beneath the bone fracture plate experienced severe bone loss. However, some level of bone formation was observed at the vicinity of the most proximal and distal screw holes in both lateral and anterior plated femurs. Furthermore, in terms of long-term density distributions, the anterior plating was not superior to the lateral plating.


2021 ◽  
Vol 318 ◽  
pp. 71-81
Author(s):  
Basma Eltlhawy ◽  
Tawfik El-Midany ◽  
Noha Fouda ◽  
Ibrahim Eldesouky

The current research presents a novel porous tibia implant design based on porous structure. The implant proximal portion was designed as a porous rhombic dodecahedron structure with 500 μm pore size. Finite element method (FEM) was used to assess the stem behavior under compressive loading compared to a solid stem model. CATIA V5R18 was used for modeling both rhombic dodecahedron and full solid models. Static structural analysis was carried out using ANSYS R18.1 to asses the implant designs. The results indicated enhanced clinical performance of tibial-knee implants compared to the solid titanium implant via increasing the maximum von-Mises stresses by 64% under the tibial tray in porous implant which reduce stress shielding. Also, the maximum shear stress developed in bone/implant interface was reduced by 68% combined with relieving the stress concentration under the stem tip to relieve patients' pain. Finally, porous implants provide cavities for bone ingrowth which improve implant fixation.


Sign in / Sign up

Export Citation Format

Share Document