stress shielding
Recently Published Documents


TOTAL DOCUMENTS

523
(FIVE YEARS 195)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Long Chao ◽  
Chen Jiao ◽  
Huixin Liang ◽  
Deqiao Xie ◽  
Lida Shen ◽  
...  

Human bone cells live in a complex environment, and the biomimetic design of porous structures attached to implants is in high demand. Porous structures based on Voronoi tessellation with biomimetic potential are gradually used in bone repair scaffolds. In this study, the mechanical properties and permeability of trabecular-like porous scaffolds with different porosity levels and average apertures were analyzed. The mechanical properties of bone-implant scaffolds were evaluated using finite element analysis and a mechanical compression experiment, and the permeability was studied by computational fluid dynamics. Finally, the attachment of cells was observed by confocal fluorescence microscope. The results show that the performance of porous structures can be controlled by the initial design of the microstructure and tissue morphology. A good structural design can accurately match the performance of the natural bone. The study of mechanical properties and permeability of the porous structure can help address several problems, including stress shielding and bone ingrowth in existing biomimetic bone structures, and will also promotes cell adhesion, migration, and eventual new bone attachment.


2021 ◽  
Vol 8 (12) ◽  
pp. 199
Author(s):  
Vamiq M. Mustahsan ◽  
Amith Anugu ◽  
David E. Komatsu ◽  
Imin Kao ◽  
Srinivas Pentyala

Background: Currently used synthetic bone graft substitutes (BGS) are either too weak to bear the principal load or if metallic, they can support loading, but can lead to stress shielding and are unable to integrate fully. In this study, we developed biocompatible, 3D printed scaffolds derived from µCT images of the bone that can overcome these issues and support the growth of osteoblasts. Methods: Cylindrical scaffolds were fabricated with acrylonitrile butadiene styrene (ABS) and Stratasys® MED 610 (MED610) materials. The 3D-printed scaffolds were seeded with Mus musculus calvaria cells (MC3T3). After the cells attained confluence, osteogenesis was induced with and without the addition of calcitonin receptor fragment peptide (CRFP) and the bone matrix production was analyzed. Mechanical compression testing was carried out to measure compressive strength, stiffness, and elastic modulus. Results: For the ABS scaffolds, there was a 9.8% increase in compressive strength (p < 0.05) in the scaffolds with no pre-coating and the treatment with CRFP, compared to non-treated scaffolds. Similarly, MED610 scaffolds treated with CRFP showed an 11.9% (polylysine pre-coating) and a 20% (no pre-coating) increase (p < 0.01) in compressive strength compared to non-treated scaffolds. Conclusions: MED610 scaffolds are excellent BGS as they support osteoblast growth and show enhanced bone growth with enhanced compressive strength when augmented with CRFP.


Author(s):  
Ola Belfrage ◽  
Erik Weber ◽  
Martin Sundberg ◽  
Gunnar Flivik

Abstract Introduction Previous bone density studies have generally shown bone resorption around both cemented and uncemented total hip arthroplasty (THA) stems. This is presumed to be due to stress shielding. Short stems have been introduced partly to preserve bone in the proximal femur by a more physiological loading of the bone. The purpose of this study was to evaluate bone remodeling around a short, fully hydroxyapatite-coated titanium stem that comes in a collared and collarless version. Patients and methods A prospective cohort of 50 patients included in a study evaluating the Furlong Evolution stem has been followed for 5 years. Examination was done with dual energy X-ray absorptiometry (DXA) postoperatively, at 1, 2 and 5 years. Clinical outcome was followed with radiography and both general and hip specific outcome measures. Results The two versions of the stem behaved similarly regarding bone remodeling. After an initial decrease up to 1 year, bone mineral density (BMD) increased in all Gruen zones up to 2 years and at 5 years bone stock was still preserved compared with postoperatively (net BMD + 1.2% (95% CI − 0.4 to 2.8)). Increase in BMD occurred mainly in the greater trochanter and distally around the stem with a decrease in the calcar area. Both versions showed excellent clinical outcome up to 5 years. Conclusion This short stem seems to preserve proximal bone stock up to 5 years, exhibiting similar behaviour both with and without a collar. Trial registration number and date of registration ClinicalTrials.gov, (identifier: NCT01894854). July 10, 2013.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daisuke Chiba ◽  
Norikazu Yamada ◽  
Yu Mori ◽  
Masamizu Oyama ◽  
Susumu Ohtsu ◽  
...  

Abstract Background This study was performed to investigate the mid-term results of Ti-Nb-Sn (TNS) alloy stem with a low Young’s modulus. Methods This study was a multicenter prospective cohort study. A total of 40 primary total hip arthroplasties performed between April 2016 and September 2017 was enrolled in this study. With the unique functional gradient properties by heating treatment, the strength of the proximal portion was enhanced, while the distal portion maintained a low Young’s modulus. The surgeries were performed through the posterolateral approach using the TNS alloy stems. Radiographs were taken from immediately after surgeries until 3 years, and stress shielding and subsidence of the stems were evaluated. The incidences of the stem breakage were also assessed. Clinical assessments were performed using Japanese Orthopaedic Association (JOA) and Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ) scores. Results Among the 40 enrolled patients, 36 patients were female and 4 were male. At 3 years after surgery, there were no radiologic signs of loosening, subsidence, or breakage of the stem. Stress shielding was observed in 26 hips (65%). Of 26 hips, 16 hips (40%) were grade 1 and 10 hips (25%) were grade 2. There was no advanced stress shielding. The JOA and JHEQ scores significantly improved compared with the preoperative scores. Conclusion The current study using a new TNS alloy femoral stem showed good clinical outcomes at 3-year follow-up. Radiologically, there was no loosening or subsidence of the stem. The mild stress shielding was observed in 65% of patients. Trial registration Current Controlled Trials ISRCTN21241251. The date of registration was October 26, 2021. Retrospectively registered.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7184
Author(s):  
Nathanael Tan ◽  
Richard van Arkel

Stiff total hip arthroplasty implants can lead to strain shielding, bone loss and complex revision surgery. The aim of this study was to develop topology optimisation techniques for more compliant hip implant design. The Solid Isotropic Material with Penalisation (SIMP) method was adapted, and two hip stems were designed and additive manufactured: (1) a stem based on a stochastic porous structure, and (2) a selectively hollowed approach. Finite element analyses and experimental measurements were conducted to measure stem stiffness and predict the reduction in stress shielding. The selectively hollowed implant increased peri-implanted femur surface strains by up to 25 percentage points compared to a solid implant without compromising predicted strength. Despite the stark differences in design, the experimentally measured stiffness results were near identical for the two optimised stems, with 39% and 40% reductions in the equivalent stiffness for the porous and selectively hollowed implants, respectively, compared to the solid implant. The selectively hollowed implant’s internal structure had a striking resemblance to the trabecular bone structures found in the femur, hinting at intrinsic congruency between nature’s design process and topology optimisation. The developed topology optimisation process enables compliant hip implant design for more natural load transfer, reduced strain shielding and improved implant survivorship.


2021 ◽  
pp. 175857322110588
Author(s):  
William R Aibinder ◽  
Fares Uddin ◽  
Ryan T Bicknell ◽  
Ryan Krupp ◽  
Markus Scheibel ◽  
...  

Background Finite element analysis has suggested that stemless implants may theoretically decrease stress shielding. The purpose of this study was to assess the radiographic proximal humeral bone adaptations seen following stemless anatomic total shoulder arthroplasty. Methods A retrospective review of 152 prospectively followed stemless total shoulder arthroplasty utilizing a single implant design was performed. Anteroposterior and lateral radiographs were reviewed at standard time points. Stress shielding was graded as mild, moderate, and severe. The effect of stress shielding on clinical and functional outcomes was assessed. Also, the influence of subscapularis management on the occurrence of stress shielding was determined. Results At 2 years postoperatively, stress shielding was noted in 61 (41%) shoulders. A total of 11 (7%) shoulders demonstrated severe stress shielding with 6 occurring along the medial calcar. There was one instance of greater tuberosity resorption. At the final follow-up, no humeral implants were radiographically loose or migrated. There was no statistically significant difference in clinical and functional outcomes between shoulders with and without stress shielding. Patients undergoing a lesser tuberosity osteotomy had lower rates of stress shielding, which was statistically significant ( p = 0.021) Discussion Stress shielding does occur at higher rates than anticipated following stemless total shoulder arthroplasty, but was not associated with implant migration or failure at 2 years follow-up. Level of evidence IV, Case series.


Author(s):  
Bolun Liu ◽  
Huizhi Wang ◽  
Ningze Zhang ◽  
Min Zhang ◽  
Cheng-Kung Cheng

Cementless femoral stems are prone to stress shielding of the femoral bone, which is caused by a mismatch in stiffness between the femoral stem and femur. This can cause bone resorption and resultant loosening of the implant. It is possible to reduce the stress shielding by using a femoral stem with porous structures and lower stiffness. A porous structure also provides a secondary function of allowing bone ingrowth, thus improving the long-term stability of the prosthesis. Furthermore, due to the advent of additive manufacturing (AM) technology, it is possible to fabricate femoral stems with internal porous lattices. Several review articles have discussed porous structures, mainly focusing on the geometric design, mechanical properties and influence on bone ingrowth. However, the safety and effectiveness of porous femoral stems depend not only on the characteristic of porous structure but also on the macro design of the femoral stem; for example, the distribution of the porous structure, the stem geometric shape, the material, and the manufacturing process. This review focuses on porous femoral stems, including the porous structure, macro geometric design of the stem, performance evaluation, research methods used for designing and evaluating the femoral stems, materials and manufacturing techniques. In addition, this review will evaluate whether porous femoral stems can reduce stress shielding and increase bone ingrowth, in addition to analyzing their shortcomings and related risks and providing ideas for potential design improvements.


Author(s):  
Zhen Tang ◽  
Xinghui Wei ◽  
Tian Li ◽  
Hao Wu ◽  
Xin Xiao ◽  
...  

Previous studies have found that the novel low-elastic-modulus Ti2448 alloy can significantly reduce stress shielding and contribute to better bone repair than the conventional Ti6Al4V alloy. In this study, the promotion of osteogenesis and angiogenesis by three-dimensionally printed Ti2448 were also observed in vivo. However, these were not significant in a series of in vitro tests. The stiffness of materials has been reported to greatly affect the response of macrophages, and the immunological regulation mediated by macrophages directly determines the fate of bone implants. Therefore, we designed more experiments to explore the role of three-dimensionally printed Ti2448 in macrophage activation and related osteogenesis and angiogenesis. As expected, we found a significant increase in the number of M2 macrophages around Ti2448 implants, as well as better osteogenesis and angiogenesis in vivo. In vitro studies also showed that macrophages pre-treated with Ti2448 alloy significantly promoted angiogenesis and osteogenic differentiation through increased PDGF-BB and BMP-2 secretion, and the polarization of M2 macrophages was enhanced. We deduced that Ti2448 promotes angiogenesis and osteogenesis through Piezo1/YAP signaling axis-mediated macrophage polarization and related cytokine secretion. This research might provide insight into the biological properties of Ti2448 and provide a powerful theoretical supplement for the future application of three-dimensionally printed Ti2448 implants in orthopaedic surgery.


Author(s):  
Ivan Camilo Lopez Galiano ◽  
Mario Juha ◽  
Juan Guillermo Ortiz Martínez ◽  
Julian Mauricio Echeverry Mejia

Abstract The maximum stresses on a femoral stem must be known for selecting the right size and shape of the shaft cross-sectional area for reducing the stress shielding effect generated after the total hip arthroplasty (THA) surgical procedure. The methodology proposed in this study provides the tools to the designers of femoral stems and orthopedic surgeons to select the adequate femoral stem cross section, decreasing the stiffness of the stem, thus reducing the stress shielding effect in the patient bones. The first contribution is the theoretical development of the maximum static stress calculation for 12 different femoral stem models with the beam theory, followed by the comparison with the static finite element analysis (FEA) simulations and finally the experimental corroboration of one femoral stem model measuring the strain with linear strain gages and transform it to stresses, the three different approaches provide comparable results, with a maximum average error of less than 8.5%. The second contribution is the formulation of a new selection methodology based on maximum stresses in the femoral stem and the cross-section area for decreasing the stress shielding effect, optimizing the area needed for withstand the loads and decreasing the overall stiffens of the stem.


JOM ◽  
2021 ◽  
Author(s):  
Gargi Shankar Nayak ◽  
Flavien Mouillard ◽  
Patrick Masson ◽  
Geneviève Pourroy ◽  
Heinz Palkowski ◽  
...  

AbstractThe “stress-shielding” problem, common with metallic implants, may be solved by using biocompatible sandwiches with a polymeric core between two metallic skin sheets. To achieve such sandwiches, a process route has been developed, beginning with the grafting of poly-(methyl-methacrylate) (PMMA) on titanium (Ti) sheets via the “grafting from” technique. Grafting resulted in variable thicknesses of PMMA on the Ti sheets. Hot-pressing was used to prepare semi-finished Ti–PMMA–Ti sandwiches. The adhesion was achieved by the interpenetration between PMMA sheet and the grafted PMMA chains. Investigation was carried out to understand the influence of the grafted PMMA thickness on the adhesion strength. Similar adhesion strengths were found for the sandwiches despite variable grafted PMMA thicknesses, indicating a successful grafting of PMMA on large-scale Ti sheets. The adhesion followed the autohesion theory, where a time-dependent increase in adhesion strength was found for the sandwiches.


Sign in / Sign up

Export Citation Format

Share Document