The effects of extrusion processing of distillers dried grains with solubles (DDGS)-based yellow perch (Perca flavescens) feeds

2009 ◽  
Author(s):  
Ferouz Y Ayadi ◽  
Kasiviswanathan Muthukumarappan ◽  
Kurt A Rosentrater ◽  
Michael L Brown
2011 ◽  
Vol 5 (5) ◽  
pp. 1963-1978 ◽  
Author(s):  
Ferouz Y. Ayadi ◽  
Kurt A. Rosentrater ◽  
Kasiviswanathan Muthukumarappan ◽  
Michael L. Brown

2011 ◽  
Vol 88 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Ferouz Y. Ayadi ◽  
Kasiviswanathan Muthukumarappan ◽  
Kurt A. Rosentrater ◽  
Michael L. Brown

2012 ◽  
Vol 1 (3) ◽  
pp. 230 ◽  
Author(s):  
Parisa Fallahi ◽  
Kasiviswanathan Muthukumarappan ◽  
Kurt A. Rosentrater ◽  
Michael L. Brown

<span style="color: #800000; font-family: Times New Roman; font-size: small;"> </span><p class="MsoNormal" style="margin: 0in 0in 4pt; line-height: 12pt; mso-line-height-rule: exactly;">Changing to alternative protein sources supports production of more economic aquafeeds. Two isocaloric (3.06 kcal/g) and isonitrogenous (40% db) experimental feeds for juvenile yellow perch were formulated with incorporation of fermented soybean meal (FSBM) and soy protein concentrate (SPC), each of which were at two levels (0 and 20% db), along with constant amounts of high protein distillers dried grains (DDG) (~30% db), and appropriate amounts of other ingredients. Using a pilot scale twin-screw extruder, feed production was performed in two replications for each diet at conditioner steam levels of 0.11 to 0.16 kg/min, extruder water of 0.11 to 0.19 kg/min, and screw speeds of 230 to 300 rpm. The effects of SPC and FSBM<ins datetime="2012-07-09T13:59" cite="mailto:k"> </ins>inclusion on extrudate physical properties were compared with those of a control diet (which contained 20% fishmeal and ~30% DDG). Inclusion of 20% FSBM and 20%SPC resulted in a substantial decrease in unit density by 9.2 and 24%, but an increase in lightness, greenness, yellowness, and expansion ratio of the extrudates by 7, 27, 14, 7, 17, 34, 15, and 16.5%, respectively. SPC inclusion led to a considerable increase in water absorption, thermal resistivity, and thermal diffusivity by 17.5, 6.3, and 17.6%, respectively, whereas no significant change was observed for these properties with incorporation of 20% FSBM. Additionally, all extruded products had high durability. Taken together, using ~30% DDG with20% FSBM or20% SPC as alternative protein sources resulted in viable extrudates with properties appropriate for yellow perch production. A future study investigating the effect of extrusion processing conditions on the production of complete vegetable-based protein feeds for yellow perch species would be appropriate.</p><span style="color: #800000; font-family: Times New Roman; font-size: small;"> </span>


1995 ◽  
Vol 52 (3) ◽  
pp. 464-469 ◽  
Author(s):  
Todd M. Koel ◽  
John J. Peterka

Laboratory-based bioassays were conducted to determine concentrations of sodium-sulfate type salinities that limit the hatching success of several fish species. Survival to hatching (SH) was significantly lower (P < 0.05) in sodium-sulfate type waters from Devils Lake, North Dakota, of ≥ 2400 mg/L total dissolved solids (TDS) than in fresh water of 200 mg/L. In waters of 200, 1150, 2400, 4250, and 6350 mg/L TDS, walleye (Stizostedion vitreum) SH was 41, 38, 7, 1, and 0%; northern pike (Esox lucius) SH was 92, 68, 33, 2, and 0%; yellow perch (Perca flavescens) SH was 88, 70, 73, 0, and 0%; white sucker (Catostomus commersoni) SH was 87, 95, 66, 0, and 0%; common carp (Cyprinus carpio) SH was 71, 69, 49, 63, and 25%.


1992 ◽  
Vol 49 (12) ◽  
pp. 2474-2482 ◽  
Author(s):  
Jay A. Nelson ◽  
John J. Magnuson

Little is known about the animals that occupy naturally acidic habitats. To better understand the physiological state of animals from temperate, naturally acidic systems, we compared metabolite stores and meristics of two yellow perch (Perca flavescens) populations in northern Wisconsin. One population originated from a naturally acidic, dystrophic lake (Acid-Lake-Perch, ALP) and had previously been shown to have enhanced tolerance to low pH. The second population came from two nearby interconnected circumneutral, mesotrophic lakes (Neutral-Lake-Perch, NLP). Perch were collected throughout the year to account for seasonal effects and to discern whether patterns of metabolite utilization differed between populations. ALP had smaller livers containing less glycogen and greater muscle glycogen content than NLP. The ALP also had significantly greater liver and visceral lipid contents, and females from this population committed a greater fraction of their body mass to egg production. We interpret these results as indicative of physiological divergence at the population level in yellow perch. These results are discussed as possible products of H+ -driven changes in metabolism and as possible products of different life history strategies between populations. Our results also show that perch living in acidic, dystrophic Wharton Lake are not acid stressed.


Sign in / Sign up

Export Citation Format

Share Document