WATER USE AND CONSERVATION AT TEXAS HIGH PLAINS BEEF CATTLE FEEDYARDS

2000 ◽  
Vol 16 (1) ◽  
pp. 77-82 ◽  
Author(s):  
D. B. Parker ◽  
L. J. Perino ◽  
B. W. Auvermann ◽  
J. M. Sweeten
2014 ◽  
Vol 106 (3) ◽  
pp. 831-843 ◽  
Author(s):  
Cody J. Zilverberg ◽  
C. Philip Brown ◽  
Paul Green ◽  
Michael L. Galyean ◽  
Vivien G. Allen

2015 ◽  
Vol 107 (5) ◽  
pp. 1922-1930 ◽  
Author(s):  
B. Hao ◽  
Q. Xue ◽  
T. H. Marek ◽  
K. E. Jessup ◽  
J. Becker ◽  
...  

HortScience ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1632-1641
Author(s):  
Hyungmin Rho ◽  
Paul Colaizzi ◽  
James Gray ◽  
Li Paetzold ◽  
Qingwu Xue ◽  
...  

The Texas High Plains has a semi-arid, hot, windy climate that features high evapotranspiration (ET) demands for crop production. Irrigation is essential for vegetable production in the region, but it is constrained by depleting groundwater from the Ogallala Aquifer. High-tunnel (HT) production systems may reduce irrigation water demand and protect crops from severe weather events (e.g., hail, high wind, freezing) common to the region. The objective of this study was to compare yields, fruit quality, crop water use, and crop water use efficiency (WUE) of jalapeno pepper (Capsicum annuum L.) and tomatoes (Solanum lycopersicum L.) in HT and open field (OF) production systems. We hypothesized that the protection from dry and high winds by HT would improve yields and quality of fruits and reduce water use of peppers and tomatoes. During the 2018 and 2019 growing seasons, peppers and tomatoes were transplanted on two HT plots and two identical OF plots. Plastic mulch was used in combination with a surface drip irrigation system. Micrometeorological variables (incoming solar irradiance, air temperature, relative humidity, and wind speed) and soil physical variables (soil temperature and volumetric soil water) were measured. Air temperatures were significantly higher during the daytime, and wind speed and light intensity were significantly lower in HT compared with OF. Despite the lower light intensity, yields were greater in HT compared with OF. The fruits grown in HT did not show significant differences in chemical quality attributes, such as ascorbic acid and lycopene contents, compared with those grown in OF. Because of protection from dry, high winds, plants in HT required less total water over the growing seasons compared with OF, resulting in increased WUE. The 2018 and 2019 data showed that HT production is advantageous as compared to conventional OF production in terms of increased WUE and severe weather risk mitigation for high-value vegetable production in the Texas High Plains.


2002 ◽  
Vol 34 (3) ◽  
pp. 561-583 ◽  
Author(s):  
Megan L. Britt ◽  
Octavio A. Ramirez ◽  
Carlos E. Carpio

Production function models for cotton lint yields, seed yields, turnout, and lint quality characteristics are developed for the Texas High Plains. They are used to evaluate the impacts of quality considerations and of climate/weather information on the management decisions and on the profitability and risk of irrigated cotton production systems. It is concluded that both quality considerations and improved climatic/weather information could have substantial effects on expected profitability and risk. These effects mainly occur because of changes in optimal variety selection and irrigation water use levels. Quality considerations in particular result in significantly lower irrigation water use levels regardless of the climate/weather information assumption, which has important scarce-resource use implications for the Texas High Plains.


2003 ◽  
Author(s):  
Marty B. Rhoades ◽  
David B. Parker ◽  
Bobby Dye

1990 ◽  
Vol 5 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Sharif M. Masud ◽  
Ronald D. Lacewell

AbstractThe purpose of this paper was to quantify economic and energy use implications of new improved irrigation and limited tillage production systems for the Texas High Plains. Per hectare uses of natural gas and electricity under alternative irrigation distribution systems for corn, sorghum, wheat, cotton, and soybeans were utilized to estimate total amounts of natural gas and electricity used in the production of these crops on the High Plains of Texas. The amount of diesel fuel used was estimated for conventional and limited tillage systems under dryland and irrigation production. Total amounts of water used for the five crops under the improved and conventional irrigation systems were also estimated for the High Plains. Results indicated improved irrigation and limited tillage systems reduced energy and water use on the High Plains. Total natural gas and electricity were estimated to decline over 20 percent, diesel fuel declined 32 percent, and water use for irrigation declined about 23 percent. Use of the improved irrigation and limited tillage production systems was also shown to significantly increase annual net returns to farmers ($40.0 million or 13.3 percent).


2016 ◽  
Vol 35 (2) ◽  
pp. 111-123 ◽  
Author(s):  
G. W. Marek ◽  
P. H. Gowda ◽  
T. H. Marek ◽  
D. O. Porter ◽  
R. L. Baumhardt ◽  
...  

2018 ◽  
Author(s):  
Kenneth D Casey ◽  
Richard W Todd ◽  
Marty B Rhoades ◽  
David B Parker

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 416 ◽  
Author(s):  
Joshua A. Machicek ◽  
Brock C. Blaser ◽  
Murali Darapuneni ◽  
Marty B. Rhoades

As water levels in the Ogallala Aquifer continue to decline in the Texas High Plains, alternative forage crops that utilize less water must be identified to meet the forage demand of the livestock industry in this region. A two-year (2016 and 2017) study was conducted at West Texas A&M University Nance Ranch near Canyon, TX to evaluate the forage production and quality of brown midrib (BMR) sorghum-sudangrass (SS) (Sorghum bicolor (L.) Moench ssp. Drummondii) and BMR pearl millet (PM) (Pennisetum glaucum (L.) Leeke)) harvested under three regimes (three 30-d, two 45-d, and one 90-d harvests). Sorghum-sudangrass consistently out yielded PM in total DM production in both tested years (yield range 3.96 to 6.28 Mg DM ha−1 vs. 5.38 to 11.19 Mg DM ha−1 in 2016 and 6.00 to 9.87 Mg DM ha−1 vs. 6.53 to 15.51 Mg DM ha−1 in 2017). Water use efficiency was higher in PM compared to SS. The 90-d harvesting regime maximized the water use efficiency and DM production compared to other regimes in both crops; however, some forage quality may be sacrificed. In general, the higher forage quality was achieved in shorter interval harvesting regimes (frequent cuttings). The selection of suitable forage crop and harvesting regime based on this research can be extremely beneficial to the producers of Texas High Plains to meet their individual forage needs and demand.


Sign in / Sign up

Export Citation Format

Share Document