sorghum sudangrass
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Robert L. Meagher ◽  
Rodney N. Nagoshi ◽  
Shelby J. Fleischer ◽  
John K. Westbrook ◽  
David L. Wright ◽  
...  

Abstract Background Fall armyworm, Spodoptera frugiperda (J. E. Smith) is a migratory moth that annually migrates northward each spring from sites in southern Florida and southern Texas. This caterpillar pest feeds on and damages row, turf and vegetable crops in the eastern and central U.S. Before migrating in spring, it feeds on cover crops in central and eastern Florida and expands its populations. Our objective was to use multi-year studies to compare fall armyworm populations that develop in cover crop plants. Methods A series of field experiments and a laboratory feeding study were conducted to compare infestation and feeding and of fall armyworm on different cover crop plants. Field experiments had plots planted with corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], a standard cover crop in Florida, and two alternative cover crops, sunn hemp (Crotalaria juncea L.) and cowpea [Vigna unguiculata (L.) Walpers spp. unguiculata]. Another trial compared populations in sorghum-sudangrass and in mixtures of sorghum-sudangrass with buckwheat (Fagopyrum esculentum Moench) or pearl millet (Cenchrus americanus (L.) Morrone). Fall armyworm larvae were fed and allowed to develop on different sunn hemp germplasm in a laboratory trial. Results Field populations of fall armyworm were highest on corn, followed by sorghum-sudangrass. Sunn hemp and cowpea had larval populations 70–96% less than on sorghum-sudangrass, suggesting replacement of this cover crop with either plant species might help reduce areawide populations of resident or migratory fall armyworm. Larvae collected from cover crop plots had parasitism levels that averaged 30%, with Chelonus insularis (Hymenoptera: Braconidae) emerging as the most commonly-collected species. Larval feeding on different sunn hemp germplasm lines resulted in no difference in weight gain. Conclusions Replacing sorghum-sudangrass with sunn hemp varieties or germplasm should be acceptable as a replacement cover crop for areawide management of fall armyworm.


EDIS ◽  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Zane Joseph Grabau

Sorghum and sorghum-sudangrass are often used in crop rotation systems in Florida. They produce a source of forage or silage for animal feed, and many cultivars are effective in reducing population levels of root-knot nematodes, which are key nematode pests in Florida as well as many other parts of the world. This article is intended to guide agricultural professionals in making decisions about producing sorghum and its relatives for nematode management.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2449
Author(s):  
John A. Guretzky ◽  
Daren D. Redfearn

Interseeding annual warm-season grasses into perennial cool-season grasses has the potential to increase summer forage mass and nutritive value. Knowledge of how seeding rate affects annual warm-season grass establishment, forage mass, and vegetation dynamics remains limited. From 2016–2017, we conducted a field experiment evaluating the effects of seeding rates on sorghum-sudangrass (Sorghum bicolor × S. bicolor var. sudanense) density and forage mass and on the frequency of occurrence of plant species in cool-season grass sod in Lincoln, NE. The experiment had a completely randomized design consisting of six replicates of four seeding rates [0, 14, 28, and 35 kg pure live seed (PLS) ha−1] in sod mowed at a 2.5-cm height and one unseeded, non-mowed control treatment. Sorghum-sudangrass establishment increased with seeding rate from an average of 20 to 45 plants m−2 as the seeding rate increased from 14 to 35 kg PLS ha−1. Forage mass depended on a seeding rate × harvest interaction, showing positive linear and cubic responses to seeding rate in consecutive harvests at 45 and 90 d after interseeding. To increase forage mass in perennial cool-season grass sod, producers should interseed sorghum-sudangrass with at least 28 kg PLS ha−1. One-time seedings into cool-season, perennial grass sod have no residual effects on subsequent forage mass and vegetation dynamics.


Crops ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 141-152
Author(s):  
Leonard M. Lauriault ◽  
Murali K. Darapuneni

Alfalfa (Medicago sativa L.) establishment failure is often attributed to autotoxicity when alfalfa is reseeded shortly after termination of the previous alfalfa stand, but renovation/rotation strategies for irrigated semiarid, subtropical environments have not been studied. Two identical studies were initiated at the New Mexico State University Rex E. Kirksey Agricultural Science Center at Tucumcari, NM, USA to compare continuous alfalfa (ALF), a single year of rotation to sorghum-sudangrass (SS1; Sorghum bicolor × S. sudanense (Piper) Stapf), two years of rotation with sorghum-sudangrass (SS2), and winter wheat forage (Triticum aestivum L.) followed by a single season of sorghum-sudangrass (WW/SS). Soil type and renovation/rotation strategy may influence soil fertility prior to replanting alfalfa, but soil fertility did not appear to influence alfalfa re-establishment or first production year yields. With a Test x Rotation interaction due to differences between tests for WW/SS for first production year yield after September alfalfa replanting, the main effect of Rotation was significant for yield (6.43AB, 5.3B0, 6.92A, and 3.54C Mg ha−1 for ALF, SS1, SS2, and WW/SS, respectively; 5% LSD = 1.22). Alfalfa stand destruction and replanting with no intervening crop rotation may be feasible in sandy soils with irrigation in the semiarid, subtropical southwestern USA and similar environments.


Nematology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Hung X. Bui ◽  
Johan A. Desaeger

Summary Cover crops can be a useful tool for managing plant-parasitic nematodes provided they are poor or non-hosts for the target nematode species. A glasshouse experiment was done to determine the host status of four common cover crops in Florida, sunn hemp, cowpea, sorghum sudangrass and sunflower, to pure populations of four common tropical root-knot nematode (RKN) species Meloidogyne javanica (Mj), M. incognita (Mi), M. enterolobii (Me) and M. arenaria (Ma). Tomato was included as a susceptible control. Eight weeks after nematode inoculation (WAI), tomato showed the highest root gall damage for all tested RKN species, with gall indices (GI) between 7 (Ma) and 8.5 (Me) and reproduction factor (RF) ranging from 20 (Ma) to 50 (Mj). No visible root galls were observed for any of the RKN species on sunn hemp and sorghum sudangrass at 8 WAI. However, Mj and Mi were able to reproduce slightly on sorghum sudangrass (RF = 0.02 and 0.79, respectively). Sunflower and cowpea were infected by all four tested RKN species, but host suitability varied. Sunflower root galling ranged from 1.1 (Me) to 4.5 (Mj) and RF = 3.2 (Me) to 28.7 (Mj), while cowpea root galling ranged from 0.6 (Mi) to 5.1 (Me) and RF = 0.8 (Mi) to 67.3 (Mj). Sunn hemp and, to a lesser extent, sorghum sudangrass were poor hosts to all four tested RKN species. Sunflower was a good host to all RKN species, but root gall damage and RF were lowest for Me. Cowpea was a good host to Mj, Me and Ma, but a poor host to Mi. Our results confirm and stress the importance of RKN species identification when selecting cover crops as an RKN management strategy.


2021 ◽  
Vol 9 (9) ◽  
pp. 1831
Author(s):  
Roshan Paudel ◽  
Philip Waisen ◽  
Koon-Hui Wang

Sorghum/sorghum–sudangrass hybrids (SSgH) have been used as a cover crop to improve soil health by adding soil organic matter, enhancing microbial activities, and suppressing soil-borne pathogens in various cropping systems. A series of SSgH were screened for (1) allelopathic suppression and (2) improvement of soil edaphic factors and soil microbial profile against plant-parasitic nematode (PPNs). The allelopathic potential of SSgH against PPNs is hypothesized to vary by variety and age. In two greenhouse bioassays, ‘NX-D-61′ sorghum and the ‘Latte’ SSgH amendment provided the most suppressive allelopathic effect against the female formation of Meloidogyne incognita on mustard green seedlings when using 1-, 2-, or 3-month-old SSgH tissue, though most varieties showed a decrease in allelopathic effect as SSgH mature. A field trial was conducted where seven SSgH varieties were grown for 2.5 months and terminated using a flail mower, and eggplant was planted in a no-till system. Multivariate analysis of measured parameters revealed that increase in soil moisture, microbial biomass, respiration rate, nematode enrichment index, and sorghum biomass were negatively related to the initial abundance of PPNs and the root-gall index at 5 months after planting eggplant in a no-till system. These results suggested that improvement of soil health by SSgH could lead to suppression of PPN infection.


Euphytica ◽  
2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Peng Jin ◽  
Lihua Wang ◽  
Wenjie Zhao ◽  
Jian Zheng ◽  
Yi-Hong Wang ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Thierry E. Besançon ◽  
Maggie H. Wasacz ◽  
Joseph R. Heckman

Cover crops included in a crop rotation can help increase nitrogen (N) availability to subsequent crops, raise soil organic matter, and suppress emergence and growth of various weed species. However, weed suppression by cover crops has mostly been investigated shortly after cover crop termination and not over a longer period spanning into the next cropping season. The effects of sunn hemp (Crotalaria juncea) and sorghum-sudangrass (Sorghum ×drummondi) planted the previous year on N availability before transplanting of late summer cabbage (Brassica oleracea), weed germination and growth, and cabbage yield was examined in field studies conducted in 2018 and 2019 at Pittstown, NJ. Results established that there was little evidence for a functional difference in soil N availability for fall cabbage production because of previous cover crop type. Heavy rainfall events both years may have caused major losses of available N that might otherwise be expected to come from N mineralization of residues of legume cover crop like sunn hemp. During the cover crop season, smooth pigweed (Amaranthus hybridus) and common lambsquarters (Chenopodium album) dry biomass was 77% and 82% lower, respectively, in sorghum-sudangrass compared with sunn hemp plots. The subsequent season following sorghum-sudangrass cover crop, dry biomass of broadleaf weeds was lower by 74% and 56% in June and July, respectively, compared with preceding sunn hemp. Smooth pigweed, common lambsquarters, and hairy galinsoga (Galinsoga quadriradiata) were the weed species most consistently affected by preceding sorghum-sudangrass cover crop with biomass decreased by up to 80%, 78%, and 64%, respectively. Thus, it appears that sorghum-sudangrass can provide suppression of some broadleaf species over a relatively long period and is indicative of sorghum-sudangrass allelopathic activity. On the contrary, density and biomass of grassy weeds as well as commercial yield of transplanted cabbage were unaffected by the preceding cover crop. These results suggest that sorghum-sudangrass cover crop could be integrated to transplanted cole crop rotation for providing weed suppression benefits without altering crop yield in New Jersey organic vegetable cropping systems.


Sign in / Sign up

Export Citation Format

Share Document