Conducting Unmanned Aircraft Flight Operations Under Federal Aviation Administration Regulations

Author(s):  
John H. Mott ◽  
Zachary A. Marshall ◽  
Mark A. Vandehey ◽  
Mike May ◽  
Darcy M. Bullock

Versatile unmanned aerial system (UAS) platforms have grown significantly in popularity by virtue of their low cost relative to manned aircraft, high performance, and operational simplicity. While the Federal Aviation Administration (FAA) currently regulates the operating altitudes, speeds, weights, pilot qualifications, and locations of drones, a lack of capacity and technology prohibits sufficient enforcement of these restrictions. To assess the frequency and severity of manned and unmanned aircraft separation incidents, and to examine the emerging sensor technology available to facilitate such assessment, flight operations in controlled airspace around Orlando Melbourne International Airport (KMLB) were monitored. One sensor system deployed at KMLB reported UAS locations, altitudes, and flight durations, while a second system reported manned aircraft positions, altitudes, and timestamps using ADS-B signals. Evaluation of flight operations data in the vicinity of KMLB revealed eight potential drone incursions over a 2-week period. Aircraft flight paths were retroactively tracked to map these unmanned and manned aerial conflicts; aircraft identification information was also researched to contextualize the incidents. The frequency and magnitude of identified events suggest the need for additional research to further explore the problem scope and potential solutions.


1958 ◽  
Vol 30 (7) ◽  
pp. 692-693
Author(s):  
W. E. Clark ◽  
W. J. Galloway ◽  
A. C. Pietrasanta ◽  
K. N. Stevens

2020 ◽  
Vol 12 (19) ◽  
pp. 3112
Author(s):  
Michael Hatfield ◽  
Catherine Cahill ◽  
Peter Webley ◽  
Jessica Garron ◽  
Rebecca Beltran

Over the past decade Unmanned Aircraft Systems (UAS, aka “drones”) have become pervasive, touching virtually all aspects of our world. While UAS offer great opportunity to better our lives and strengthen economies, at the same time these can significantly disrupt manned flight operations and put our very lives in peril. Balancing the demanding and competing requirements of safely integrating UAS into the United States (US) National Airspace System (NAS) has been a top priority of the Federal Aviation Administration (FAA) for several years. This paper outlines efforts taken by the FAA and the National Aeronautics and Space Administration (NASA) to create the UAS Traffic Management (UTM) system as a means to address this capability gap. It highlights the perspectives and experiences gained by the University of Alaska Fairbanks (UAF) Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) as one of the FAA’s six UAS test sites participating in the NASA-led UTM program. The paper summarizes UAF’s participation in the UTM Technical Capability Level (TCL1-3) campaigns, including flight results, technical capabilities achieved, lessons learned, and continuing challenges regarding the implementation of UTM in the NAS. It also details future efforts needed to enable practical Beyond-Visual-Line-of-Sight (BVLOS) flights for UAS operations in rural Alaska.


Author(s):  
Michael D. Zollars ◽  
Richard G. Cobb

The feasibility of using a constrained Delaunay triangulation method for determining optimal flight trajectories of unmanned air vehicles in a constrained environment is explored. Current methods for developing optimal flight trajectories have yet to achieve computational times that allow for real-time implementation. The proposed method alleviates the dependency of problem specific parameters while eliminating constraints on the Non-Linear Program. Given an input of obstacles with n vertices, a constrained Delaunay triangulation is performed on the space. Converting the vertices of the triangulation to barycentric coordinates on a phased approach defines the state bounds and max time for each phase. With two-dimensional aircraft dynamics, direct orthogonal collocation methods are performed to compute the optimal flight trajectory. Results illustrate computational times and feasibility of Small Unmanned Aircraft System flight trajectories through polygon constraints.


2008 ◽  
Vol 2008 (1) ◽  
pp. 431-433 ◽  
Author(s):  
William J. Lehr

ABSTRACT For the last several decades, the sensors available for remote sensing of oil spills have changed significantly while the platforms for these sensors have remained unaltered. The limitations on these platforms are well known. Satellites are expensive, remote, and inflexible. Fixed-wing aircraft cannot hover easily over the spill site and often fly too fast for good observations. Helicopters are expensive, require specially trained pilots, and can be more hazardous than other alternatives. Unmanned aircraft systems (UAS) provide a potentially new alternative platform for monitoring spill location and clean-up operations. The aircraft (also called unmanned aerial or airborne vehicles) fit into three general categories. Very large aircraft require much or more of the infrastructure of manned aircraft and will probably be deployed only in spills of national significance. Mid-range vehicles have proven their worth monitoring forests fires, emergencies with many similar requirements to oil spills, but still require designated landing and take-off facilities. A rapidly expanding category is the very small UAS that can be field launched and recovered. The range, guidance, and sensor availability of these aircraft have improved considerably from early prototypes. This paper explores the possibility of incorporating particularly these smaller UAS into spill response. Potential roadblocks include weather limitations, operator training, payload restrictions and regulatory restrictions. This last roadblock is presently the most difficult to overcome although re-consideration at the Federal Aviation Administration could modify existing regulations, making use of low-flying unmanned aircraft more plausible. Assuming the necessary regulatory changes, the paper explores typical applications and expected benefits from such system.


Author(s):  
Asma Tabassum ◽  
William Semke

An analysis of the performance of Automatic Dependent Surveillance-Broadcast (ADS-B) data received from the Grand Forks, North Dakota International Airport was carried out in this study. The purpose was to understand the vulnerabilities of Universal Access Transceiver (UAT) ADS-B system and recognize the effects on present and future Air Traffic Control (ATC) operation. The Federal Aviation Administration (FAA) mandated all the General Aviation aircraft to be equipped with ADS-B. The aircraft flying within United States and below the transition altitude (18,000 feet) are more likely to install an UAT ADS-B. At present unmanned aircraft systems (UAS) and autonomous air traffic control (ATC) towers are being integrated into the aviation industry and UAT ADS-B is a basic sensor for both class 1 and class 2 Detect and Avoid (DAA) systems. As a fundamental component of future surveillance system, the anomalies and vulnerabilities of ADS-B system need to be identified to enable a fully utilized airspace with enhanced situational awareness. The data received was archived in GDL-90 format, which was parsed into readable data. The anomaly detection of ADS-B messages was based on the FAA ADS-B performance assessment report. The data investigation revealed ADS-B message suffered from different anomalies including drop out; missing payload; data jump; low confident data and altitude discrepancy. Among those studied, the most severe was drop out and 32.49% of messages suffered from this anomaly. Dropout is an incident where ADS-B failed to update within a specified rate. Considering the potential danger being imposed, an in-depth analysis was carried out to characterize message dropout. Three flight parameters were selected to investigate their effect on drop out. Statistical analysis was carried out and Friedman Statistical Test identified that altitude affected drop out more than any other flight parameters.


Sign in / Sign up

Export Citation Format

Share Document