Calibration Method Research of Structured-light Sensor Camera System for Soil Surface Roughness Measurement

2018 ◽  
Author(s):  
Xiaoju Yang ◽  
Hang Xie ◽  
Yitao Liao ◽  
Ning Dai ◽  
Guangyin Gao ◽  
...  
2004 ◽  
Author(s):  
Zhiling Long ◽  
Ping-Rey Jang ◽  
Jiann-Cherng Su ◽  
Yun Sun ◽  
J. A. Thomasson ◽  
...  

2017 ◽  
Vol 137 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Mitsutoshi Okada ◽  
Tomoharu Fujii ◽  
Maya Mizuno ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 232-241
Author(s):  
Na Ta ◽  
Chutian Zhang ◽  
Hongru Ding ◽  
Qingfeng Zhang

AbstractTillage and slope will influence soil surface roughness that changes during rainfall events. This study tests this effect under controlled conditions quantified by geostatistical and fractal indices. When four commonly adopted tillage practices, namely, artificial backhoe (AB), artificial digging (AD), contour tillage (CT), and linear slope (CK), were prepared on soil surfaces at 2 × 1 × 0.5 m soil pans at 5°, 10°, or 20° slope gradients, artificial rainfall with an intensity of 60 or 90 mm h−1 was applied to it. Measurements of the difference in elevation points of the surface profiles were taken before rainfall and after rainfall events for sheet erosion. Tillage practices had a relationship with fractal indices that the surface treated with CT exhibited the biggest fractal dimension D value, followed by the surfaces AD, AB, and CK. Surfaces under a stronger rainfall tended to have a greater D value. Tillage treatments affected anisotropy differently and the surface CT had the strongest effect on anisotropy, followed by the surfaces AD, AB, and CK. A steeper surface would have less effect on anisotropy. Since the surface CT had the strongest effect on spatial variability or the weakest spatial autocorrelation, it had the smallest effect on runoff and sediment yield. Therefore, tillage CT could make a better tillage practice of conserving water and soil. Simultaneously, changes in semivariogram and fractal parameters for surface roughness were examined and evaluated. Fractal parameter – crossover length l – is more sensitive than fractal dimension D to rainfall action to describe vertical differences in soil surface roughness evolution.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4386
Author(s):  
Afshin Azizi ◽  
Yousef Abbaspour-Gilandeh ◽  
Tarahom Mesri-Gundoshmian ◽  
Aitazaz A. Farooque ◽  
Hassan Afzaal

Soil roughness is one of the most challenging issues in the agricultural domain and plays a crucial role in soil quality. The objective of this research was to develop a computerized method based on stereo vision technique to estimate the roughness formed on the agricultural soils. Additionally, soil till quality was investigated by analyzing the height of plow layers. An image dataset was provided in the real conditions of the field. For determining the soil surface roughness, the elevation of clods obtained from tillage operations was computed using a depth map. This map was obtained by extracting and matching corresponding keypoints as super pixels of images. Regression equations and coefficients of determination between the measured and estimated values indicate that the proposed method has a strong potential for the estimation of soil shallow roughness as an important physical parameter in tillage operations. In addition, peak fitting of tilled layers was applied to the height profile to evaluate the till quality. The results of this suggest that the peak fitting is an effective method of judging tillage quality in the fields.


Sign in / Sign up

Export Citation Format

Share Document