Ecosystem services evaluation of futuristic bioenergy based land use change and their uncertainty from climate change and variability

2021 ◽  
Vol 759 ◽  
pp. 143525
Author(s):  
Fengqi Cui ◽  
Bojie Wang ◽  
Qin Zhang ◽  
Haiping Tang ◽  
Philippe De Maeyer ◽  
...  

2013 ◽  
Vol 42 (1) ◽  
pp. 251-274 ◽  
Author(s):  
Tingting Liu ◽  
Nathaniel H. Merrill ◽  
Arthur J. Gold ◽  
Dorothy Q. Kellogg ◽  
Emi Uchida

This study spatially quantifies hydrological ecosystem services and the production of ecosystem services at the watershed scale. We also investigate the effects of stressors such as land use change, climate change, and choices in land management practices on production of ecosystem services and their values. We demonstrate the approach in the Beaver River watershed in Rhode Island. Our key finding is that choices in land use and land management practices create tradeoffs across multiple ecosystem services and the extent of these tradeoffs depends considerably on the scenarios and ecosystem services being compared.


2020 ◽  
Author(s):  
Joris Eekhout ◽  
Carolina Boix-Fayos ◽  
Pedro Pérez-Cutillas ◽  
Joris de Vente

<p>The Mediterranean region has been identified as one of the most affected global hot-spots for climate change. Recent climate change in the Mediterranean can be characterized by faster increasing temperatures than the global mean and significant decreases in annual precipitation. Besides, important land cover changes have occurred, such as reforestation, agricultural intensification, urban expansion and the construction of many reservoirs, mainly with the purpose to store water for irrigation. Here we study the impacts of these changes on several ecosystem services in the Segura River catchment, a typical large Mediterranean catchment where many of the before mentioned changes have occurred in the last half century. We applied a hydrological model, coupled with a soil erosion and sediment transport model, to study the impact of climate and land cover change and reservoir construction on ecosystem services for the period 1971-2010. Eight ecosystem services indicators were defined, which include runoff, plant water stress, hillslope erosion, reservoir sediment yield, sediment concentration, reservoir storage, flood discharge and low flow. To assess larger land use changes, we also applied the model for an extended period (1952-2018) to the Taibilla subcatchment, a typical Mediterranean mountainous subcatchment, which plays an important role in the provision of water within the Segura River catchment. As main results we observed that climate change in the evaluated period is characterized by a decrease in precipitation and an increase in temperature. Detected land use change over the past 50 years is typical for many Mediterranean catchments. Natural vegetation in the headwaters increased due to agricultural land abandonment. Agriculture expanded in the central part of the catchment, which most likely is related to the construction of reservoirs in the same area. The downstream part of the catchment is characterized by urban expansion. While land use changed in more than 30% of the catchment, most impact on ecosystem services can be attributed to climate change and reservoir construction. All these changes have had positive and negative impacts on ecosystem services. The positive impacts include a decrease in hillslope erosion, sediment yield, sediment concentration and flood discharge (-21%, -18%, -82% and -41%, respectively). The negative impacts include an increase in plant water stress (+5%) and a decrease in reservoir storage (-5%). The decrease in low flow caused by land use change was counteracted by an increase in low flow due to reservoir construction. The results of our study highlight how relatively small climate and land use changes compared to the changes foreseen for the coming decades, have had an important impact on ecosystem services over the past 50 years.</p>


2020 ◽  
Author(s):  
Henrique M. Pereira ◽  
Isabel M.D. Rosa ◽  
Inês S. Martins ◽  
HyeJin Kim ◽  
Paul Leadley ◽  
...  

AbstractDespite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity.One Sentence SummaryDevelopment pathways exist that allow for a reduction of the rates of biodiversity loss from land-use change and improvement in regulating services but climate change poses an increasing challenge.


Sign in / Sign up

Export Citation Format

Share Document