Effect of Drainage Water Reuse on Supplementary Irrigation and Drainage Reduction

2018 ◽  
Vol 61 (5) ◽  
pp. 1619-1626
Author(s):  
Pingjin Jiao ◽  
Yingduo Yu ◽  
Di Xu

Drainage water reuse has the potential to supplement irrigation, reduce drainage, and alleviate the area source pollution caused by agricultural drainage. This study aimed to evaluate the effects of influencing factors of drainage water reuse on supplementary irrigation and drainage reduction rates. To evaluate the effects, a water balance model was constructed to describe the irrigation water requirement and drainage water storage of a pond. The irrigation water requirement was calculated using the Penman-Monteith equation and the crop coefficient method while considering field leakage and effective rainfall; the drainage water volume was calculated using the improved Soil Conservation Service (SCS) model. The model was applied to the rice planting area in the Zhanghe Reservoir Irrigation District. Simulation results show that the supplementary irrigation and drainage reduction rates are primarily affected by the ratio of irrigation to drainage areas (RID), the pond volume ratio (PV), and the initial storage ratio (PSi); interactions among the three parameters are also observed. The RID, PV, and PSi contribute approximately 4:3:1 to the average variations in the supplementary irrigation rate. The supplementary irrigation rate increases with the values of PV and PSi but decreases with the increases of RID. For the drainage reduction rate variation, the average contribution percentages of PV and RID are 70% and 10%, respectively. Increasing PV and RID or reducing PSi enhances the drainage reduction rate. Adjusting the combination of parameters PV and RID can simultaneously maximize the supplementary irrigation and drainage reduction rates. Keywords: Drainage reduction, Drainage water reuse, Pond, Supplementary irrigation, Water balance model.

2008 ◽  
Vol 37 (S5) ◽  
pp. S-8-S-24 ◽  
Author(s):  
Dennis L. Corwin ◽  
Scott M. Lesch ◽  
James D. Oster ◽  
Stephen R. Kaffka

2021 ◽  
Author(s):  
Marco Mancini ◽  
Chiara Corbari ◽  
Imen Ben Charfi ◽  
Ahmad Al Bitar ◽  
Drazen Skokovic ◽  
...  

<p>The conflicting use of water is becoming more and more evident, also in regions that are traditionally rich in water. With the world’s population projected to increase to 8.5 billion by 2030, the simultaneous growth in income will imply a substantial increase in demand for both water and food. Climate change impacts will further stress the water availability enhancing also its conflictual use. The agricultural sector is the biggest and least efficient water user, accounts for around 24% of total water use in Europe, peaking at 80% in the southern regions.</p><p>This paper shows the implementation of a system for real-time operative irrigation water management at high spatial and temporal able to monitor the crop water needs reducing the irrigation losses and increasing the water use efficiency, according to different agronomic practices supporting different level of water users from irrigation consortia to single farmers. The system couples together satellite (land surface temperature LST and vegetation information) and ground data, with pixel wise hydrological crop soil water energy balance model. In particular, the SAFY (Simple Algorithm for Yield) crop model has been coupled with the pixel wise energy water balance FEST-EWB model, which assimilate satellite LST for its soil parameters calibration. The essence of this coupled modelling is that the SAFY provides the leaf area index (LAI) evolution in time used by the FEST-EWB for evapotranspiration computation while FEST-EWB model provides soil moisture (SM) to SAFY model for computing crop grow for assigned water content.</p><p>The FEST-EWB-SAFY has been firstly calibrated in specific fields of Chiese (maize crop) and Capitanata (tomatoes) where ground measurements of evapotranspiration, soil moisture and crop yields are available, as well as LAI from Sentinel2-Landsat 7 and 8 data. The FEST-EWB-SAFY model has then been validated also on several fields of the RICA farms database in the two Italian consortia, where the economic data are available plus the crop yield. Finally, the modelled maps of LAI have then been validated over the whole Consortium area (Chiese and Capitanata) against satellite data of LAI from Landsat 7 and 8, and Sentinel-2.</p><p>Optimized irrigation volumes are assessed based on a soil moisture thresholds criterion, allowing to reduce the passages over the field capacity threshold reducing the percolation flux with a saving of irrigation volume without affecting evapotranspiration and so that the crop production. The implemented strategy has shown a significative irrigation water saving, also in this area where a traditional careful use of water is assessed.</p><p>The activity is part of the European project RET-SIF (www.retsif.polimi.it).</p>


2006 ◽  
Vol 55 (5) ◽  
pp. 463-477 ◽  
Author(s):  
P. S. Minhas ◽  
N. K. Tyagi ◽  
S. K. Gupta ◽  
K. L. Dong ◽  
L. G. Cai ◽  
...  

2010 ◽  
Vol 33 (2) ◽  
pp. 131-143
Author(s):  
Hossam M. Moghazy ◽  
Mohamed M. Sobeih ◽  
Esam E. Helal ◽  
Gamal A. Kamel ◽  
Mahmoud A. El-Hadad

Sign in / Sign up

Export Citation Format

Share Document