agricultural drainage water
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 32)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Arnaud Jéglot ◽  
Kirk Matthew Schnorr ◽  
Sebastian Reinhold Sørensen ◽  
Lars Elsgaard

Nitrate removal was enhanced by the addition of isolated and pre-grown psychrotolerant denitrifiers at low temperature (5 °C).


Author(s):  
Ilaria Braschi ◽  
Sonia Blasioli ◽  
Stevo Lavrnić ◽  
Enrico Buscaroli ◽  
Katia Di Prodi ◽  
...  

AbstractA non-waterproofed surface flow constructed wetland (SFCW), treating agricultural drainage water in Northern Italy, was investigated to gain information on the potential ability for effective pesticide abatement. A mixture of insecticide imidacloprid, fungicide dimethomorph, and herbicide glyphosate was applied, by simulating a single rain event, into 470-m-long water course of the SFCW meanders. The pesticides were monitored in the wetland water and soil for about 2 months after treatment. Even though the distribution of pesticides in the wetland was not uniform, for each of them, a mean dissipation of 50% of the applied amount was already observed at ≤7 days. The dissipation trend in the water phase of the wetland fitted (r2 ≥ 0.8166) the first-order model with calculated DT50 of 20.6, 12.0, 5.8, and 36.7 days for imidacloprid, dimethomorph, glyphosate, and the glyphosate metabolite AMPA, respectively. The pesticide behavior was interpreted based on the chemical and physical characteristics of both the substances and the water-soil system. Despite the fast abatement of glyphosate, traces were detected in the water until the end of the trial. The formation of soluble 1:1 complex between glyphosate and calcium, the most representative cation in the wetland water, was highlighted by infrared analyses. Such a soluble complex was supposed to keep traces of the herbicide in solution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arnaud Jéglot ◽  
Joachim Audet ◽  
Sebastian Reinhold Sørensen ◽  
Kirk Schnorr ◽  
Finn Plauborg ◽  
...  

Woodchip bioreactors are increasingly used to remove nitrate (NO3–) from agricultural drainage water in order to protect aquatic ecosystems from excess nitrogen. Nitrate removal in woodchip bioreactors is based on microbial processes, but the microbiomes and their role in bioreactor efficiency are generally poorly characterized. Using metagenomic analyses, we characterized the microbiomes from 3 full-scale bioreactors in Denmark, which had been operating for 4–7 years. The microbiomes were dominated by Proteobacteria and especially the genus Pseudomonas, which is consistent with heterotrophic denitrification as the main pathway of NO3– reduction. This was supported by functional gene analyses, showing the presence of the full suite of denitrification genes from NO3– reductases to nitrous oxide reductases. Genes encoding for dissimilatory NO3– reduction to ammonium were found only in minor proportions. In addition to NO3– reducers, the bioreactors harbored distinct functional groups, such as lignocellulose degrading fungi and bacteria, dissimilatory sulfate reducers and methanogens. Further, all bioreactors harbored genera of heterotrophic iron reducers and anaerobic iron oxidizers (Acidovorax) indicating a potential for iron-mediated denitrification. Ecological indices of species diversity showed high similarity between the bioreactors and between the different positions along the flow path, indicating that the woodchip resource niche was important in shaping the microbiome. This trait may be favorable for the development of common microbiological strategies to increase the NO3– removal from agricultural drainage water.


2021 ◽  
Vol 9 (6) ◽  
pp. 1331
Author(s):  
Arnaud Jéglot ◽  
Sebastian Reinhold Sørensen ◽  
Kirk M. Schnorr ◽  
Finn Plauborg ◽  
Lars Elsgaard

Denitrifying woodchip bioreactors (WBR), which aim to reduce nitrate (NO3−) pollution from agricultural drainage water, are less efficient when cold temperatures slow down the microbial transformation processes. Conducting bioaugmentation could potentially increase the NO3− removal efficiency during these specific periods. First, it is necessary to investigate denitrifying microbial populations in these facilities and understand their temperature responses. We hypothesized that seasonal changes and subsequent adaptations of microbial populations would allow for enrichment of cold-adapted denitrifying bacterial populations with potential use for bioaugmentation. Woodchip material was sampled from an operating WBR during spring, fall, and winter and used for enrichments of denitrifiers that were characterized by studies of metagenomics and temperature dependence of NO3− depletion. The successful enrichment of psychrotolerant denitrifiers was supported by the differences in temperature response, with the apparent domination of the phylum Proteobacteria and the genus Pseudomonas. The enrichments were found to have different microbiomes’ composition and they mainly differed with native woodchip microbiomes by a lower abundance of the genus Flavobacterium. Overall, the performance and composition of the enriched denitrifying population from the WBR microbiome indicated a potential for efficient NO3− removal at cold temperatures that could be stimulated by the addition of selected cold-adapted denitrifying bacteria.


2021 ◽  
Vol 774 ◽  
pp. 145070
Author(s):  
Mette Vodder Carstensen ◽  
Dominik Zak ◽  
Sofie Gyritia Madsen van't Veen ◽  
Kamila Wisniewska ◽  
Niels Bering Ovesen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document