Development of an Automated High- Throughput Phenotyping System for Wheat Evaluation in a Controlled Environment

2019 ◽  
Vol 62 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Chongyuan Zhang ◽  
Chongyuan Zhang ◽  
Michael O. Pumphrey ◽  
Jianfeng Zhou ◽  
Qin Zhang ◽  
...  

Abstract. Plant breeding has significantly improved in recent years; however, phenotyping remains a bottleneck, as the process of evaluating and measuring plant traits is often expensive, subjective, and laborious. Although commercial phenotyping systems are available, factors like cost, space, and need for specific controlled-environment conditions limit the affordability of these products. An accurate, user-friendly, adaptive, and high-throughput phenotyping (HTP) system is highly desirable to plant breeders, physiologists, and agronomists. To solve this problem, an automated HTP system and image processing algorithms were developed and tested in this study. The automated platform was an integration of an aluminum framework (including movement and control components), three cameras, and a laptop computer. A control program was developed using LabVIEW to manage operation of the system frame and sensors as a single-unit automated HTP system. Image processing algorithms were developed in MATLAB for high-throughput analysis of images acquired by the system to estimate phenotypes and traits associated with tested plants. The phenotypes extracted were color/spectral, texture, temperature, morphology, and greenness features on a temporal scale. Using two wheat lines with known heat tolerance, the functions of the HTP system were validated. Heat stress tolerance experiments revealed that features such as green leaf area and green normalized difference vegetation index derived from our system showed differences between the control and heat stress treatments, as well as between heat-tolerant and susceptible wheat lines. In another experiment, stripe rust resistance in wheat was assessed. With the HTP system, some potential for detecting qualitative traits, such as disease resistance, was observed, although further validation is needed. In summary, successful development and implementation of an automated system with custom image processing algorithms for HTP in wheat was achieved. Improvement of such systems would further help plant breeders, physiologists, and agronomists to phenotype crops in an efficient, objective, and high-throughput manner. Keywords: Automation, Heat stress, Image processing, Plant breeding, Sensing, Stripe rust.

Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Fast track article for IS&T International Symposium on Electronic Imaging 2020: Image Processing: Algorithms and Systems proceedings.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


Sign in / Sign up

Export Citation Format

Share Document