scholarly journals Some Improved Estimators in Double Sampling Using two Auxiliary Variables

Author(s):  
Mohammad S. Ahmed

Dash and Mishra [1] suggested an improved class of estimators without defining the optimum estimator. However, they gave the wrong Taylor’s series expression of their class of estimator and their minimum mean squared error expressions are also incorrect. Here we show that Ahmed et al.’s [2] class of chain estimators is more efficient than Dash and Mishra’s [1], with minimum mean squared error.  

Author(s):  
Housila P. Singh ◽  
Pragati Nigam

This article addresses the problem of estimating the population mean using information on two auxiliary variables in presence of non-response on study variable only under stratified random sampling. A class of estimators has been defined. We have derived the bias and mean squared error up to first order of approximation. Optimum conditions are obtained in which the suggested class of estimators has minimum mean squared error. In addition to Chaudhury et al. (2009) estimator, many estimators can be identified as a member of the suggested class of estimators. It has been shown that the suggested class of estimators is better than the Chaudhury et al. (2009) estimator and other estimators. Results of the present study are supported through numerical illustration.


1983 ◽  
Vol 32 (1-2) ◽  
pp. 47-56 ◽  
Author(s):  
S. K. Srivastava ◽  
H. S. Jhajj

For estimating the mean of a finite population, Srivastava and Jhajj (1981) defined a broad class of estimators which we information of the sample mean as well as the sample variance of an auxiliary variable. In this paper we extend this class of estimators to the case when such information on p(> 1) auxiliary variables is available. The estimators of the class involve unknown constants whose optimum values depend on unknown population parameters. When these population parameters are replaced by their consistent estimates, the resulting estimators are shown to have the same asymptotic mean squared error. An expression by which the mean squared error of such estimators is smaller than those which use only the population means of the auxiliary variables, is obtained.


2016 ◽  
Vol 5 (3) ◽  
pp. 55 ◽  
Author(s):  
M. E. Kanwai ◽  
O. E. Asiribo ◽  
A. Isah

This paper explore the need for exploiting auxiliary variables in sample survey and utilizing asymptotically optimum estimator in double sampling to increase the efficiency of estimators. The study proposed two types of estimators with two auxiliary variables for two phase sampling when there is no information about auxiliary variables at population level. The expressions for the Mean Squared Error (MSE) of the proposed estimators were derived to the first order of approximation. An empirical comparative approach of the minimum variances and percent relative efficiency were adopted to study the efficiency of the proposed and existing estimators. It was established that, the proposed estimators performed more efficiently than the mean per unit estimator and other previous estimators that don’t use auxiliary variable and that are not asymptotically optimum. Also, it was established that estimators that are asymptotically optimum that utilized single auxiliary variable are more efficient than those that are not asymptotically optimum with two auxiliary variables.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Guikai Hu ◽  
Qingguo Li ◽  
Shenghua Yu

Under a balanced loss function, we derive the explicit formulae of the risk of the Stein-rule (SR) estimator, the positive-part Stein-rule (PSR) estimator, the feasible minimum mean squared error (FMMSE) estimator, and the adjusted feasible minimum mean squared error (AFMMSE) estimator in a linear regression model with multivariateterrors. The results show that the PSR estimator dominates the SR estimator under the balanced loss and multivariateterrors. Also, our numerical results show that these estimators dominate the ordinary least squares (OLS) estimator when the weight of precision of estimation is larger than about half, and vice versa. Furthermore, the AFMMSE estimator dominates the PSR estimator in certain occasions.


2021 ◽  
Vol 3 (1) ◽  
pp. 15-27
Author(s):  
Shagufta Mehnaz ◽  
Shakeel Ahmed

Auxiliary information is very important in constructing estimators for the population parameters for increasing the efficiency different sampling schemes. In this paper, we consider the problem of estimation of population mean using information on auxiliary variables in systematic sampling. We derive the expressions for the bias and mean squared error (MSE) of the suggested estimators up to the 1st degree of approximation. Proposed estimators are compared with usual mean estimator in systematic sampling scheme theoretically as well as empirically.


2020 ◽  
Author(s):  
Seojeong Lee ◽  
Youngki Shin

Summary We propose a two-stage least squares (2SLS) estimator whose first stage is the equal-weighted average over a complete subset with k instruments among K available, which we call the complete subset averaging (CSA) 2SLS. The approximate mean squared error (MSE) is derived as a function of the subset size k by the Nagar (1959) expansion. The subset size is chosen by minimising the sample counterpart of the approximate MSE. We show that this method achieves asymptotic optimality among the class of estimators with different subset sizes. To deal with averaging over a growing set of irrelevant instruments, we generalise the approximate MSE to find that the optimal k is larger than otherwise. An extensive simulation experiment shows that the CSA-2SLS estimator outperforms the alternative estimators when instruments are correlated. As an empirical illustration, we estimate the logistic demand function in Berry et al. (1995) and find that the CSA-2SLS estimate is better supported by economic theory than are the alternative estimates.


Author(s):  
James Weimer ◽  
Nicola Bezzo ◽  
Miroslav Pajic ◽  
Oleg Sokolsky ◽  
Insup Lee

2021 ◽  
Vol 19 (1) ◽  
pp. 2-20
Author(s):  
Piyush Kant Rai ◽  
Alka Singh ◽  
Muhammad Qasim

This article introduces calibration estimators under different distance measures based on two auxiliary variables in stratified sampling. The theory of the calibration estimator is presented. The calibrated weights based on different distance functions are also derived. A simulation study has been carried out to judge the performance of the proposed estimators based on the minimum relative root mean squared error criterion. A real-life data set is also used to confirm the supremacy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document