Abstracts: Deposition of Deep-Water Sands, Pliocene, Niger Delta: Sequence Stratigraphy, Depositional Facies, and Sand Body Geometry and Stacking Patterns

AAPG Bulletin ◽  
1997 ◽  
Vol 81 (1997) ◽  
Author(s):  
KREISA, RONALD D.,  with ackno
2021 ◽  
Author(s):  
Onome Okobiebi ◽  
Becky Okobiebi

Abstract Modelling the most appropriate depositional environment is essential in the reservoir characterisation and 3D modelling of oil bearing sands and the integration of various workflows reduces the uncertainty in deciding the appropriate depositional model which serves as a precursor into petrophysical property distribution during 3D modelling. This paper elaborates a robust study of the integration facies analysis, 2D sequence Stratigraphy and biostratigraphy data in depicting the environment of deposition of the OBOM field. The lithological description of the G8 to the F5 reservoirs ranged from finning upward sequence and blocky shaped sequence as channel sands and coursing upward shoreface deposits. Mineralogical descriptions of the penetrated sands were also carried out, especially on the F5 reservoir in which the presence of radioactive minerals was decisive to constrain the depositional environment to lower shoreface. In the Sequence stratigraphic analysis two 3rd Order depositional cycles was identified from top to bottom in the field. This is substantiated by the facies trend, facies cross plot and cycles indicators like maximum flooding surfaces identified by regional marker shales, biofacies population and biodiversity charts and sequence stratigraphic methods like sequence thickness, bed stacking patterns and facies depositional patterns with regards sea level change. It was noticed that reservoir thickness reduces from the bottom to the top with the proximal channel sands in deep intervals gradually overlain by distal upper shoreface sands and lower shoreface sands at the shallower intervals. The gross depositional environment was a transgressive marine settings ranging from the lower shoreface and channelized upper shoreface deposits. The results from the integration of facies analysis, biofacies, seismic analysis and sequence stratigraphy results reduces uncertainty in depositional environment models.


Palaios ◽  
2001 ◽  
Vol 16 (3) ◽  
pp. 294-305 ◽  
Author(s):  
C. E. SAVRDA ◽  
J. V. BROWNING ◽  
H. KRAWINKEL ◽  
S. P. HESSELBO

AAPG Bulletin ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 465-482 ◽  
Author(s):  
Nathan P. Benesh ◽  
Andreas Plesch ◽  
John H. Shaw

2021 ◽  
Author(s):  
Anton Khitrenko ◽  
Adelia Minkhatova ◽  
Vladimir Orlov ◽  
Dmitriy Kotunov ◽  
Salavat Khalilov

Abstract Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir. Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas. In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Akinyemi ◽  
Oluwaseun Daniel ◽  
Ayuk ◽  
Michael Ayuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document