Do High Resolution Sequence Stratigraphic Studies of Quaternary Strata Yield Useful Results for Oil and Gas Exploration? : ABSTRACTS

AAPG Bulletin ◽  
1997 ◽  
Vol 81 (1997) ◽  
Author(s):  
ANDERSON, JOHN B., LAURA A. BANFIEL
2020 ◽  
Vol 8 (1) ◽  
pp. SA49-SA61
Author(s):  
Huihuang Tan ◽  
Donghong Zhou ◽  
Shengqiang Zhang ◽  
Zhijun Zhang ◽  
Xinyi Duan ◽  
...  

Amplitude-variation-with-offset (AVO) technique is one of the primary quantitative hydrocarbon discrimination methods with prestack seismic data. However, the prestack seismic data are usually have low data quality, such as nonflat gathers and nonpreserved amplitude due to absorption, attenuation, and/or many other reasons, which usually lead to a wrong AVO response. The Neogene formations in the Huanghekou area of the Bohai Bay Basin are unconsolidated clastics with a high average porosity, and we find that the attenuation on seismic signal is very strong, which causes an inconsistency of AVO responses between seismic gathers and its corresponding synthetics. Our research results indicate that the synthetic AVO response can match the field seismic gathers in the low-frequency end, but not in the high-frequency components. Thus, we have developed an AVO response correction method based on high-resolution complex spectral decomposition and low-frequency constraint. This method can help to achieve a correct high-resolution AVO response. Its application in Bohai oil fields reveals that it is an efficient way to identify hydrocarbons in rocks, which provides an important technique for support in oil and gas exploration and production in this area.


2007 ◽  
Vol 13 ◽  
pp. 17-20 ◽  
Author(s):  
Erik S. Rasmussen ◽  
Thomas Vangkilde-Pedersen ◽  
Peter Scharling

Intense investigations of deep aquifers in Jylland, western Denmark, during the last seven years have resulted in de tailed mapping of Miocene sand-rich deposits laid down in fluvial channels, delta lobes, shoreface and spit complexes (Fig. 1; Rasmussen 2004). Detailed sedimentological and paly nol ogical studies of outcrops and cores, and interpretation of high-resolution seismic data, have resulted in a well-founded sequence-stratigraphic and lithostratigraphic scheme (Fig. 1) suitable for prediction of the distribution of sand. The Miocene succession onshore Denmark is divided into three sand-rich deltaic units: the Ribe and Bastrup sands and the Odderup Formation (Fig. 2). Prodeltaic clayey deposits of the Vejle Fjord and Arnum Formations interfinger with the sand-rich deposits. Most of the middle and upper Mio- cene in Denmark is composed of clayey sediments referred to the Hodde and Gram Formations (Fig. 2). This paper presents examples of seismic reflection patterns that have proved to correlate with sand-rich deposits from lower Miocene deltaic deposits and that could be applied in future exploration for aquifers and as analogues for oil- and gas-bearing sands in wave-dominated deltas.


2013 ◽  
Vol 868 ◽  
pp. 168-171
Author(s):  
Xiao Jie Geng ◽  
Chang Song Lin ◽  
Xiao Min Zhu ◽  
Yan Lei Dong ◽  
Qi Luo

Hetaoyuan formation of Palaeogene in Biyang sag experienced the process of sedimentation during the main depressing period. Lithological traps were formed by the Sandstone-conglomerate bodies as favorite targets for oil and gas exploration in the southeast of Biyang sag. In this study, seismic profile, cores and well loggings as main data are used to analyze the micro-facies of subaqueous fan complex system. Methods such as Phasing concertion, spectrum decomposition, and strata slice play important roles in the study of facies evolution and distribution in high-resolution sequence framework of the upper member of the third Hetaoyuan formation. Subsequently, All of the coarse-grained turbid sandstone and the distributary channels sediments are potential reservoirs for oil and gas storage.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012051
Author(s):  
Weibo Cai ◽  
Juncan Deng ◽  
Qirong Lu ◽  
Kengdong Lu ◽  
Kaiqing Luo

Abstract The identification and classification of high-resolution rock images are significant for oil and gas exploration. In recent years, deep learning has been applied in various fields and achieved satisfactory results. This paper presents a rock classification method based on deep learning. Firstly, the high-resolution rock images are randomly divided into several small images as a training set. According to the characteristics of the datasets, the ResNet (Residual Neural Network) is optimized and trained. The local images obtained by random segmentation are predicted by using the model obtained by training. Finally, all probability values corresponding to each category of the local image are combined for statistics and voting. The maximum probability value and the corresponding category are taken as the final classification result of the classified image. Experimental results show that the classification accuracy of this method is 99.6%, which proves the algorithm’s effectiveness in high-resolution rock images classification.


Sign in / Sign up

Export Citation Format

Share Document