scholarly journals Automated Classification of High-resolution Rock Image Based on Residual Neural Network

2021 ◽  
Vol 2095 (1) ◽  
pp. 012051
Author(s):  
Weibo Cai ◽  
Juncan Deng ◽  
Qirong Lu ◽  
Kengdong Lu ◽  
Kaiqing Luo

Abstract The identification and classification of high-resolution rock images are significant for oil and gas exploration. In recent years, deep learning has been applied in various fields and achieved satisfactory results. This paper presents a rock classification method based on deep learning. Firstly, the high-resolution rock images are randomly divided into several small images as a training set. According to the characteristics of the datasets, the ResNet (Residual Neural Network) is optimized and trained. The local images obtained by random segmentation are predicted by using the model obtained by training. Finally, all probability values corresponding to each category of the local image are combined for statistics and voting. The maximum probability value and the corresponding category are taken as the final classification result of the classified image. Experimental results show that the classification accuracy of this method is 99.6%, which proves the algorithm’s effectiveness in high-resolution rock images classification.

2019 ◽  
Vol 30 (2) ◽  
pp. 1264-1273 ◽  
Author(s):  
Jeong Hyun Lee ◽  
Ijin Joo ◽  
Tae Wook Kang ◽  
Yong Han Paik ◽  
Dong Hyun Sinn ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Yaning Liu ◽  
Lin Han ◽  
Hexiang Wang ◽  
Bo Yin

Papillary thyroid carcinoma (PTC) is a common carcinoma in thyroid. As many benign thyroid nodules have the papillary structure which could easily be confused with PTC in morphology. Thus, pathologists have to take a lot of time on differential diagnosis of PTC besides personal diagnostic experience and there is no doubt that it is subjective and difficult to obtain consistency among observers. To address this issue, we applied deep learning to the differential diagnosis of PTC and proposed a histological image classification method for PTC based on the Inception Residual convolutional neural network (IRCNN) and support vector machine (SVM). First, in order to expand the dataset and solve the problem of histological image color inconsistency, a pre-processing module was constructed that included color transfer and mirror transform. Then, to alleviate overfitting of the deep learning model, we optimized the convolution neural network by combining Inception Network and Residual Network to extract image features. Finally, the SVM was trained via image features extracted by IRCNN to perform the classification task. Experimental results show effectiveness of the proposed method in the classification of PTC histological images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song-Quan Ong ◽  
Hamdan Ahmad ◽  
Gomesh Nair ◽  
Pradeep Isawasan ◽  
Abdul Hafiz Ab Majid

AbstractClassification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 667
Author(s):  
Wei Chen ◽  
Qiang Sun ◽  
Xiaomin Chen ◽  
Gangcai Xie ◽  
Huiqun Wu ◽  
...  

The automated classification of heart sounds plays a significant role in the diagnosis of cardiovascular diseases (CVDs). With the recent introduction of medical big data and artificial intelligence technology, there has been an increased focus on the development of deep learning approaches for heart sound classification. However, despite significant achievements in this field, there are still limitations due to insufficient data, inefficient training, and the unavailability of effective models. With the aim of improving the accuracy of heart sounds classification, an in-depth systematic review and an analysis of existing deep learning methods were performed in the present study, with an emphasis on the convolutional neural network (CNN) and recurrent neural network (RNN) methods developed over the last five years. This paper also discusses the challenges and expected future trends in the application of deep learning to heart sounds classification with the objective of providing an essential reference for further study.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2006 ◽  
Vol 14 (7S_Part_19) ◽  
pp. P1067-P1068
Author(s):  
Pradeep Anand Ravindranath ◽  
Rema Raman ◽  
Tiffany W. Chow ◽  
Michael S. Rafii ◽  
Paul S. Aisen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document