Geology along the Fairweather-Queen Charlotte Fault System off Southeast Alaska and British Columbia from GLORIA Images and Seismic-Reflection Data: ABSTRACT

AAPG Bulletin ◽  
1990 ◽  
Vol 74 ◽  
Author(s):  
Terry R. Bruns, Paul R. Carlson, An
2015 ◽  
Vol 55 (2) ◽  
pp. 467
Author(s):  
Alexander Robson ◽  
Rosalind King ◽  
Simon Holford

The authors used three-dimensional (3D) seismic reflection data from the central Ceduna Sub-Basin, Australia, to establish the structural evolution of a linked normal fault assemblage at the extensional top of a gravitationally driven delta system. The fault assemblage presented is decoupled at the base of a marine mud from the late Albian age. Strike-linkage has created a northwest–southeast oriented assemblage of normal fault segments and dip-linkage through Santonian strata, which connects a post-Santonian normal fault system to a Cenomanian-Santonian listric fault system. Cenomanian-Santonian fault growth is on the kilometre scale and builds an underlying structural grain, defining the geometry of the post-Santonian fault system. A fault plane dip-angle model has been created and established through simplistic depth conversion. This converts throw into fault plane dip-slip displacement, incorporating increasing heave of a listric fault and decreasing in dip-angle with depth. The analysis constrains fault growth into six evolutionary stages: early Cenomanian nucleation and radial growth of isolated fault segments; linkage of fault segments by the latest Cenomanian; latest Santonian Cessation of fault growth; erosion and heavy incision during the continental break-up of Australia and Antarctica (c. 83 Ma); vertically independent nucleation of the post-Santonian fault segments with rapid length establishment before significant displacement accumulation; and, continued displacement into the Cenozoic. The structural evolution of this fault system is compatible with the isolated fault model and segmented coherent fault model, indicating that these fault growth models do not need to be mutually exclusive to the growth of normal fault assemblages.


2020 ◽  
Author(s):  
Fabrizio Pepe ◽  
Mor Kanari ◽  
Pierfrancesco Burrato ◽  
Marta Corradino ◽  
Henrique Duarte ◽  
...  

<p>An ultra-resolution, multichannel seismic reflection data set was collected during an oceanographic cruise organised in the frame of the “<em>Earthquake Potential of Active Faults using offshore Geological and Morphological Indicators</em>” (EPAF) project, which was founded by the Scientific and Technological Cooperation (Scientific Track 2017) between the Italian Ministry of Foreign Affairs and International Cooperation and the Ministry of Science, Technology and Space of the State of Israel. The data acquisition approach was based on innovative technologies for the offshore imaging of stratigraphy and structures along continental margins with a horizontal and vertical resolution at decimetric scale. In this work, we present the methodology used for the 2D HR-seismic reflection data acquisition and the preliminary interpretation of the data set. The 2D seismic data were acquired onboard the R/V Atlante by using an innovative data acquisition equipment composed by a dual-sources Sparker system and one HR 48-channel, slant streamers, with group spacing variable from 1 to 2 meters, at 10 kHz sampling rate. An innovative navigation system was used to perform all necessary computations to determining real-time positions of sources and receivers. The resolution of the seismic profiles obtained from this experiment is remarkable high respect to previously acquired seismic data for both scientific and industrial purposes. In addition to the seismic imaging, gravity core data were also collected for sedimentological analysis and to give a chronological constraint using radiocarbon datings to the shallower reflectors. The investigated area is located in the western offshore sector of the Calabrian Arc (southern Tyrrhenian Sea) where previous research works, based on multichannel seismic profiles coupled with Chirp profiles, have documented the presence of an active fault system. One of the identified faults was tentatively considered as the source of the Mw 7, 8 September 1905 seismic event that hit with highest macroseismic intensities the western part of central Calabria, and was followed by a tsunami that inundated the coastline between Capo Vaticano and the Angitola plain. On this basis, the earthquake was considered to have a source at sea, but so far, the location, geometry and kinematics of the causative fault are still poorly understood. In this study we provide preliminary results of the most technologically advanced ultra-high-resolution geophysical method used to reveal the 3D faulting pattern, the late Quaternary slip rate and the earthquake potential of the marine fault system located close to the densely populated west coast of Calabria.</p>


2021 ◽  
Author(s):  
Jorien L.N. van der Wal ◽  
Veit Nottebaum ◽  
Georg Stauch ◽  
Steven A. Binnie ◽  
Ochirbat Batkhishig ◽  
...  

<p>Four M~8 earthquakes in the 20<sup>th</sup> century reflect active deformation in western Mongolia as a result of far-field stresses related to the India-Eurasia collision. Historic seismicity indicates that deformation localises around the relatively rigid Hangay dome in central Mongolia, however, tectonic lineaments in the surrounding Valley of Lakes basins suggest more widespread and diffuse deformation. In southern Mongolia, seismicity clusters around the Bogd fault, which ruptured during the 1957 Mw 8.1 Gobi Altai earthquake. To determine whether the kinematics interpreted from this earthquake are regionally representative, especially in consideration of the heterogeneity of intraplate tectonics, we expand the spatial scale of tectonic studies to range between the Gobi Altai and Hangay massifs. We do this by combining observations from regional and local digital elevation models, ground-penetrating radar analyses, geological and geomorphological field data, and seismic reflection data. Additionally, we increase the temporal scale of palaeoseismic studies up until the Middle Pleistocene through OSL and surface exposure dating, to compare the effects of tectonic processes to those of Quaternary climate variations on landscape evolution. We show that reverse and oblique strands of the Bogd fault accommodate <0.3 mm/yr vertical slip rates along the northern margin of the transpressive Gobi Altai massif. Four ~E-W striking faults in the seismically quiescent Valley of Gobi Lakes each have the potential for M~7 earthquakes and they are likely part of a left-lateral strike-slip system rooted at depth. Although cumulatively, the Valley of Gobi Lakes faults are deforming at a regionally representative ~0.3 mm/yr vertical slip rate, recurrence intervals of major earthquakes are much longer than those determined along the Bogd fault (~5-80 ka vs. 3-5 ka). Overall, we interpret the Valley of Gobi Lakes faults to have played a large role in drainage reorganisation and Middle Pleistocene to modern landscape evolution. Sub-surface faults interpreted from seismic reflection data and associated geomorphological irregularities in the Orog Nuur Basin indicate two NW-SE striking lineaments that may connect the Valley of Gobi Lakes fault system to the Bogd fault system. Our observations suggest a more complex and extensive fault system in southern Mongolia than previously expected and the geometry and potential connectivity of faults indicates a continuing northward progression of transpressive deformation from the Gobi Altai towards the Hangay. The obscurity of active deformation in the Valley of Gobi Lakes is likely due to faster erosion and deposition rates and this highlights the importance of understanding the interplay between tectonic, climatic and geomorphological processes and their effects on the landscape system. We suggest that, especially in slowly deforming, intraplate regions, an increase of spatial and temporal scales of active tectonic research is necessary to improve interpretations of tectonically altered landforms, palaeo-environmental reconstructions, and seismic hazard assessments.</p>


1999 ◽  
Vol 89 (6) ◽  
pp. 1473-1483
Author(s):  
Lee M. Liberty ◽  
Anne M. Trehu ◽  
Richard J. Blakely ◽  
Martin E. Dougherty

Abstract Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.


1988 ◽  
Vol 25 (9) ◽  
pp. 1339-1348 ◽  
Author(s):  
David W. S. Eaton ◽  
Frederick A. Cook

LITHROPROBE seismic reflection data, coupled with information from industry seismic data and surface geology, image the thin-skinned structures of the western Rocky Mountains from the Main Ranges to the Rocky Mountain Trench near Canal Flats, British Columbia. Reprocessing of the LITHOPROBE seismic reflection line was conducted to improve resolution of upper-crustal features. Careful application of "conventional" processing techniques significantly improved the coherence of reflections from the first 6 s. A spatial semblance filter was applied to further enhance coherent signal, and residual-statics corrections were applied by cross correlation of unstacked data with semblance-filtered pilot traces.A near-basement reflection zone arising from Middle Cambrian strata is visible on an industry reflection profile at an approximate depth of 8 km beneath the Main Ranges. A similar reflection zone is imaged on the LITHOPROBE data at a depth of 11 km bsl but is interpreted as arising from Proterozoic strata. The autochthonous crystalline basement is interpreted as being below these layers and dipping about 2 °to the west. Geometric evidence is visible for several major thrust ramps involving the basal décollement and for an intermediate-level décollement that loses displacement into folds within the Porcupine Creek Anticlinorium. Reflections related to the Gypsum fault, the Redwall thrust, and the Lussier River normal fault are also imaged.


2006 ◽  
Vol 55 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Avihu Ginzburg ◽  
Moshe Reshef ◽  
Zvi Ben-Avraham ◽  
Uri Schattner

Sign in / Sign up

Export Citation Format

Share Document