acoustic basement
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Pierre Leffondré ◽  
Jacques Déverchère ◽  
Mourad Medaouri ◽  
Frauke Klingelhoefer ◽  
David Graindorge ◽  
...  

Subduction initiation is an important but still poorly documented process on Earth. Here, we document one of a few cases of ongoing transition between passive and active continental margins by identifying the geometrical and structural signatures that witness the tectonic inversion of the Algerian continental margin and the deep oceanic domain, located at the northern edge of the slow-rate, diffuse plate boundary between Africa and Eurasia. We have analyzed and tied 7900 km of deep seismic reflection post-stacked data over an area of ∼1200 km long and ∼120 km wide. The two-way traveltime lines were converted into depth sections in order to reconstruct and map realistic geometries of seismic horizons and faults from the seafloor down to the acoustic basement. Along the whole length of this young transitional domain, we identify a clear margin segmentation and significant changes in the tectonic signature at the margin toe and in the deep basement. While the central margin depicts a typical thick- and thin-skinned tectonic style with frontal propagation of crustal thrust ramps, the central-eastern margin (Jijel segment) reveals a higher strain focusing at the margin toe together with the largest flexural response of the oceanic lithosphere. Conversely, strain at the margin toe is limited in the western margin but displays a clear buckling of the oceanic crust up to the Spanish margin. We interpret these contrasting, segmented behavior as resulting from inherited heterogeneities in (1) the geometry of the Algerian continental margin from West to East (wrench faulting in the west, stretched margin elsewhere) and (2) the Miocene thermal state related to the diachronous opening of the Algerian basin and to the magmatic imprint of the Tethyan slab tearing at deep crustal levels. The narrow oceanic lithosphere of the Western Algerian basin is assumed to favor buckling against flexure. From the dimension and continuity of the main south-dipping blind thrusts identified at the margin toe, we reassess seismic hazards by defining potential lengths for ruptures zones leading to potential magnitudes up to 8.0 off the central and eastern Algerian margins.


2021 ◽  
Author(s):  
Zurriya Hayati Hasnan ◽  
Amir Ayub ◽  
Mohammad Hishamuddin Ismail ◽  
Mariah Harris ◽  
Soon Mun Chin ◽  
...  

Abstract OBJECTIVE / SCOPE The Black Sea is a Mesozoic-Cenozoic closed sea system representing one of the last few exploration frontiers in the vicinity of the European market. The overall prospectivity of the basin and associated regional prospective trends have been delineated using the integrated Play-Based Exploration approach. The tectonic evolution, basin formation, sedimentary infilling history, petroleum systems, and sedimentary plays have been investigated to search for new hydrocarbon potential in the basin. METHODS, PROCEDURES, PROCESS The seismic interpretation and mapping were based on 26 sparse 2D seismic lines (ION SPAN), which were acquired and processed in 2011-2012 by ION GTX. The multi-client data from offshore Russia, Crimea, and Ukraine were excluded due to geopolitical sanction. The seismic interpretation which was completed in the depth domain (PSDM depth) was calibrated using three Deep Sea Drilling Project (DSDP) wells namely Sites 379, 380, and 381 (Fig. 1) which penetrated only the shallower section namely the Top Miocene and Top Pliocene. However, the seismic markers where lacking well penetration were primarily interpreted based on seismic stratigraphy. Interpretation of the acoustic basement as well as crustal types were supplemented with gravity and magnetic data from Getech Globe’s database. Three key seismic lines (Fig. 1) were then selected to illustrate the overall basin geomorphology, structural evolution, and to subsequently identify play potential within the basins. The structural analysis was integrated with the seismic sequence stratigraphic analysis to understand the sedimentation history, depositional trends, kinematic evolution, and tectonic history.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gemma Aiello

Marine geological maps of the Campania region have been constructed both to a 1:25.000 and to a 1:10.000 scale in the frame of the research projects financed by the Italian National Geological Survey, focusing, in particular, on the Gulf of Naples (Southern Tyrrhenian Sea), a complex volcanic area where volcanic and sedimentary processes strongly interacted during the Late Quaternary and on the Cilento Promontory offshore. In this paper, the examples of the geological sheets n. 464 “Isola di Ischia” and n. 502 “Agropoli” have been studied. The integration of the geological maps with the seismo-stratigraphic setting of the study areas has also been performed based on the realization of interpreted seismic profiles, providing interesting data on the geological setting of the subsurface. The coastal geological sedimentation in the Ischia and Agropoli offshore has been studied in detail. The mapped geological units are represented by: i) the rocky units of the acoustic basement (volcanic and/or sedimentary); ii) the deposits of the littoral environment, including the deposits of submerged beach and the deposits of toe of coastal cliff; iii) the deposits of the inner shelf environment, including the inner shelf deposits and the bioclastic deposits; iv) the deposits of the outer shelf environment, including the clastic deposits and the bioclastic deposits; v) the lowstand system tract; vi) the Pleistocene relict marine units; vii) different volcanic units in Pleistocene age. The seismo-stratigraphic data, coupled with the sedimentological and environmental data provided by the geological maps, provided us with new insights on the geologic evolution of this area during the Late Quaternary.


2021 ◽  
Author(s):  
Kseniia Startseva ◽  
Anatoly Nikishin ◽  
Elizaveta Rodina

<p>The Eastern Arctic is poor studied by offshore drilling. There are some wells drilled on the Alaska shelf, but Russian sedimentary basins are separated from Alaska basins by tectonic structures, therefore seismic complexes could not be traced confidently from Alaska to the North Chukchi Basin. Nevertheless, seismic lines in the Eastern Arctic acquired in last decade, samples from seafloor scarps on the Mendeleev Rise (Skolotnev et al., in preparation) and geologic data from adjacent onshore geology allows to assume the mechanisms and timing of the Eastern Arctic Basins forming. According to data from De-Longa Islands and from sampling on the scarps of the Mendeleev rise, the wide basalt volcanism was acting during ±125-100 Ma. The volcanism related to forming of rift basins all over the Eastern Arctic. On the seismic lines crossing the Mendeleev Rise some structures that could be interpreted as volcanos and Seaward Dipping Reflectors (SDR) are identified at the base of geological section. The top of these structures are traced on the seismic lines, and continue from the Mendeleev rise to the North Chukchi Basin where they are covered by clastic complexes that prograde from the territory of the Early Cretaceous Verkhoyansk-Chukotka Orogen. On this account the North Chukchi Basin started to form not earlier than in Barremian-Aptian. Continuation of Mendeleev Rise into the North Chukchi Basin is confirmed by the data of magnetic anomalies. To the south of the North Chukchi Basin on the Wrangel-Gerald High the volcanic build-ups and associated intrusions are interpreted. Presence of magmatic features in this area is confirmed on the magnetic anomaly map. The volcanic horizons lay below the sedimentary cover of the North Chukchi Basin. Our main conclusion is that Mendeleev Rise and North Chukchi Basin started to form nearly simultaneously during Aptian (Barremian) - Albian time and they compile connected geodynamic system.</p>


2021 ◽  
Author(s):  
Zehra Altan ◽  
Neslihan Ocakoğlu ◽  
Gualtiero Böhm

<p>The ongoing tectonism in the Western Anatolia creates N-S extension and counter-clockwise rotational motion along the right-lateral North Anatolian fault (NAF) and left-lateral East Anatolian Fault (EAF). This continental extension creates predominantly E-W extending onshore grabens rarely NE to SW and NW to SE trending onshore/offshore grabens characterised by the intense seismic activity, high heat flow associated with volcanism, crustal thinning and geothermal systems. Our study area, the gulf of İzmir, has an “L” shape composing of an E-W oriented inner bay from İzmir to Urla and incompatibly NNW-SSE oriented outer bay between offshore Foça and Karaburun. It is located at the intersection of the E-W oriented onshore Gediz Graben and NE-SW oriented onshore Bakırçay graben. Geophysical evidence for fluid discharge and subsurface gas-associated structures such as gas chimneys, pockmarks, mud diapirs and acoustic turbidity zones have been detected in the inner and outer parts of the Gulf of İzmir by the previous studies. For this reason, the Gulf of İzmir and the adjacent onshore grabens are areas of great interest for further study of the region.</p><p>In this study, the 3-D stratigraphic architecture (up to 1.5 km) and the Upper Miocene-Pliocene depositional settings of the Gulf of İzmir reconstructed by reflection tomography for the first time. Three seismic stratigraphic units, labelled SSU1, SSU2 and SSU3 from bottom to top, were identified by their bounding unconformity surfaces (H1-H5). We have subdivided unit SSU1 into three subunits named SSU1c-SSU1a. The acoustic basement associated with SSU3 is likely tied to the Lower-Middle Miocene Yuntdağ Volcanics consisting of tuffs, sandstones, limestones and volcanics. The upper surface of SSU3 (horizon H5) is marked as a major regional unconformity representing a basin-ridge morphology. The first rocks deposited on top of acoustic basement (SSU2) correspond to the sandstones, limestones, volcanics and shales of the Bozköy Formation and the limestones of the Ularca Formation, dating from the Late Miocene to the Pliocene. The top of SSU2 (horizon H4) is interpreted as another unconformity and is correlated with the Pliocene unconformity. Above that, part of the Bayramiç Formation (SSU1c) is dated as Quaternary, consisting of conglomerates at the base overlain by sandstones and shales above. On top of the SSU1c are two further sub-units of the Bayramiç Formation separated by horizons H3 and H2. SSU1b consists of a similar sequence of conglomerates, sandstones and shales; SSU1a consists of Quaternary sandstones. Following the tomographic analysis, the isopach map of the Plio-Quaternary sediment fills was derived from the depth of interpreted horizons calculated using tomographic interval velocities. According to the isopach map of the sedimentary fills, thickness abruptly decreasing from NW to SE. The maximum thickness of total sedimentary succession is ~1400 m in the NW, whereas the thickness decreases through the west, east (up to ~450 m) and the southeastern flank of the basin, reaching ~150 m forming a ridge. A few local lateral velocity variations were identified within the Plio-Quaternary sedimentary succession associated with faults, fluid escape and shallow gas occurrences or a combination of these. </p>


2021 ◽  
Author(s):  
Elizaveta Rodina ◽  
Anatoly Nikishin ◽  
Ksenia Startseva

<p>The Mendeleev Rise is represented by an asymmetric uplifted crustal block with strongly rugged by half-graben and horst structures. High-amplitude reflectors similar to SDR (Seaward Dipping Reflectors) were found in half-grabens. Similar structures were found in the Toll and Podvodnikov basins.</p><p>The top of the SDR complex is usually relatively well defined and corresponds to the rift-post-drift boundary with an age of about 100 Ma. Small, sharp conical build-ups with a chaotic internal structure are often observed at the top of the SDR – probably submarine volcanoes. There may have been two stages of volcanism. The bottom of the SDR complex corresponds to the top of the acoustic basement (about 125 Ma). The thickness of one wedge is about 1, 5 - 3 sec. The length of distinct wedges in the Mendeleev Rise’s area is about 25-50 km, in the Podvodnikov basin’s area – 50-100 km.</p><p>Several types of SDR have been identified. The first type is identified within the Toll basin and the Mendeleev Rise. This is the most classic type.  Wedges of this type are characterized by greater thickness, but less length. Wedges are strongly curved. Several distinct wedges stand out. Distinct wedges overlap each other towards the stretch center and start from one point. SDR have longer wedges and slightly less thickness in the Podvodnikov basin’s area. The SDR complex is highly spaced apart. Wedges are less curved. Distinct wedges are located in separate half-grabens and have no common starting point. The reflectors cool down and become brighter in the central part of the Podvodnikov basin, near the axial horst. Both complexes are characterized by probable existence volcanic edifices in the top.</p><p>We traced the distribution and direction of SDRs, the bottom of the grabens, the position of probable volcanic edifices and made a map. There is symmetry and logic in the distribution of SDR. In the Toll basin, reflectors fall into each other – from the Mendeleev Rise and from the Chukotka plateau – and meet at a structure reminded of an interrupted rift. The rift is parallel to the Mendeleev Rise and the Chukotka Plateau. We can see at on Magnetic Anomalies Map. This probably corresponds to the central axis of extension of the Toll basin. Oppositely directed SDRs from the Mendeleev Rise and the Lomonosov Ridge meet near a raised block in the Podvodnikov basin. Nature of raised block is not fully understood. We call it axial horst. This uplift is subparallel to the Mendeleev Rise. This is probably associated with the central extension axis for the Podvodnikov basin.</p><p>Mendeleev Rise, Podvodnikov and Toll basins were formed approximately at the same time according to the seismic correlation.</p><p>This study was supported by RFBR grant (18-05-70011).</p>


2021 ◽  
Author(s):  
Estella Weigelt ◽  
Christoph Gaedicke ◽  
Wilfried Jokat

<p>The Lomonosov Ridge (LR) and Fram Strait (FR) represent prominent morphologic features in the Arctic Ocean. Their tectonic evolution control ocean circulation, sedimentation environment, glacial processes and ecosystem through time. We present findings of a 300 km long seismic transect from the Gakkel Deep through the southeastern Amundsen Basin (AB), and onto the LR. The data image an up to 3 km thick sedimentary sequence that can be subdivided into six major seismic units.</p><p>The two lower units AB-1 and AB-2 consist of syn-rift sediments of Paleocene to early Eocene age likely eroded off the Barents-Kara and Laptev Sea shelves, and the subsiding LR.</p><p>AB-2 includes the time interval of the “Azolla event,” which is regarded as an era of a warm Arctic Ocean punctuated by episodic incursions of fresh water. The connection to North Atlantic waters via the Fram Strait was not yet established, and anoxic conditions prevailed in the young, still isolated Eurasian Basin. Also, the LR still was above or close to sea level and posed an obstacle for water exchange between the Eurasian and Amerasian basins.</p><p>The top of AB-2 onlaps the acoustic basement at magnetic anomaly C21o (∼47.3 Ma). Its contact with unit AB-3 above is marked by a striking loss in reflection amplitudes. This prominent interface can be traced through the AB, indicating widespread changes in tectonic and deposition conditions in the Arctic Ocean since the middle Eocene. For younger crust the depth of acoustic basement rises significantly, as well as the deformation of the surface. Both are probably linked to a reorganization of tectonic plates accompanied by a significant decrease in spreading rates.</p><p>Units AB-3 and AB-4 indicate the accumulation of sediments between the middle Eocene and the earliest Miocene. Erosional, channel-like interruptions indicate these layers to reflect the stage when Fram Strait opened and continuously deepened. Incursions of water masses from the North Atlantic probably led to first bottom currents and produced erosion, slumping, and subsequent mixing of deposits.</p><p>The upper units AB-5 to AB-6 show reflection characteristics and thicknesses similar all over the Arctic Ocean indicating that basin-wide pelagic sedimentation prevailed at least since late Oligocene. Drift bodies, sediment waves, and erosional structures indicate the onset of a modern ocean circulation system and bottom current activity in the early Miocene in the Amundsen Basin. At that time, the FR was developed widely, and also the LR no longer posed an obstacle between the Amerasia and Eurasia Basins. Lastly, unit AB-6 indicates pronounced variations in the sedimentary layers, and is associated with the onset of glacio-marine deposition since the Pliocene (5.3 Ma).</p>


2021 ◽  
Author(s):  
Mikael Evain ◽  
Philippe Schnürle ◽  
Angélique Leprêtre ◽  
Fanny Verrier ◽  
Louise Watremez ◽  
...  

Abstract. Deep seismic acquisitions and a new kinematic study recently highlighted the presence of continental crust in both the southern Mozambique's Coastal Plain (MCP) and further offshore in the North Natal Valley (NNV). Such findings falsify previous geodynamic scenarios based on the kinematic overlap between Antarctica and Africa plates, thus profoundly impacting our understanding East-Gondwana break-up. Using an updated position of Antarctica with respect to Africa this study reconsider the formation mechanism of East-African margins and most specifically of the Limpopo margin (LM). Coincident wide-angle and multi-channel seismic data acquired within the PAMELA project are processed to image the sedimentary and deep crustal structure along a profile that runs from the northeastern NNV to the Mozambique basin (MB) striking through the LM. This dataset is combined with companion deep seismic profiles and industrial onshore-offshore seismic lines to provide a robust scenario for the formation and evolution of the LM. Our P-wave velocity model consists of an upper sedimentary sequence of weakly compacted sediments including intrusions and lava flows in the NNV while contourites and mass transport deposits dominates the eastern edge of the LM. This sequence covers a thick acoustic basement that terminates as a prominent basement high just west of the contourites and mass transport deposits domain. The acoustic basement has a seismic facies and velocity signature typical of a volcano-sedimentary basin and appears widespread over our study area extending toward the eastern MCP and NNV. Based on industrial well logs that calibrate our tectono-stratigraphic analysis we constrain its age to be pre-Neocomian. We further infer that either strike-slip or trans-tensional deformation occurred at the basement high which sustained uplift up to the Neocomian. At depth, the crystalline basement and uppermost mantle velocity structures show a progressive eastward crustal thinning of continental crust along the edge of the MCP/NNV and up to the location of the basement high. On its eastern side, however, a corridor of anomalous crust depicts the velocity signature of a volcanic basement overlying lower continental crust. We infer that strike-slip rifting along the LM was accommodated at depth by ductile shearing responsible for the thinning of the continental crust and an oceanward flow of lower crustal material. This process was accompanied by intense magmatism that extruded to form the volcanic basement and gave to the corridor its peculiar structure and mixed nature. The whole region remained at a relative high level and a shallow marine environment dominated during this period. Only after break-up in the MB decoupling occurred between the MCP/NNV and the corridor allowing for the latter to subside and being covered by deep marine sediments. We provide new insights into the early evolution and formation of the LM that takes into account both kinematic and geological constraints. This scenario favors strike-slip rifting along the LM meaning that no changes in extensional direction occurred between the rifting and the opening of the MB.


2021 ◽  
Vol 62 (2) ◽  
pp. 157-172
Author(s):  
A.I. Gresov ◽  
A.V. Yatsuk

Abstract —We present research results for the geologic structure of the De Long, Aion, and Pegtymel sedimentary basins of the East Siberian Sea. The materials of geological surveys and drilling in their land area and island surroundings, the data obtained from geophysical surveys conducted by Dal’morneftegeofizika, MAGE, and Sevmorgeologiya, and the seismic and deep-drilling data on the U.S. sector of the Chukchi Sea are summarized and analyzed. Pre-Paleozoic strata and the sedimentary cover have been identified throughout the sections of the sedimentary basins, which suggests the existence of a geologic “cover–basement” boundary rather than an arbitrary called “acoustic basement” horizon. The data on the geologic structure and gas saturation of the upper parts of the sedimentary sections were obtained during the study and gas-geochemical testing of core samples and bottom sediments from coastal shallow wells and corers. Gas contained in the rocks and bottom sediments in the study area includes hydrocarbon gases (HCGs) (СН4, С2–С5, and their unsaturated homologues), СО2, Н2, Не, N2, Ar, and, seldom, CO and H2S. The data on gas saturation of bottom sediments and the geochemical parameters of their syngenetic and epigenetic gases are presented. Areas of abnormal saturation of sediments with CO2, СН4, other HCGs, H2, and He (>5, 0.05, 0.001, 0.005, and 0.005 cm3/kg, respectively) have been identified, and maps of the gas saturation patterns in bottom sediments have been compiled. It is established that both gas saturation and distribution are determined mainly by the geologic evolution, tectonics, magmatism, geocryologic conditions, lithologic composition, catagenesis, coal content, bituminosity of sedimentary rocks, and oil and gas potential of the study area.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Snons Cheong ◽  
Young-Jun Kim ◽  
Jong-Hwa Chun ◽  
Jung-Ki Kim ◽  
Shin Huh

An autonomous surface vehicle, known as a wave glider, was used to record refracted and reflected signals from a seismic source penetrating the shallow subsurface. An integrated survey system consisting of a wave gilder and a human-operated source vessel was deployed. These survey systems are used to acquire wide-offset seismic survey data from specific areas, such as offshore structures. The wave gliders can collect seismic refraction and reflection data, which can be used to estimate subsurface information, e.g., acoustic wave velocity and subsurface structure. We processed raw data collected by a receiver equipped with the wave glider and used the relationship between travel time and offset distance to calculate the velocities of shallow sedimentary deposits and the acoustic basement. The velocities of the sedimentary deposits and basement were estimated to be 1557 and 3507 m/s, respectively. We then overlaid the velocities on subsurface data measured using a single-channel streamer. Our results indicate that unmanned equipment can be used for ocean exploration to aid offshore energy development.


Sign in / Sign up

Export Citation Format

Share Document