scholarly journals Effects of the boundary layer control methods on stability and separation point

2021 ◽  
Vol 13 (1) ◽  
pp. 77-87
Author(s):  
Mihai-Vladut HOTHAZIE ◽  
Sterian DANAILA

This paper concerns the benefits of the active boundary layer control methods. The main focus was studying the effectiveness of suction control for a laminar flow over an airfoil. However, injection normal to or along the wall was also approached using two numerical methods. For different values and distributions of the velocity control magnitude, a systematic comparison was done. Having the results of the laminar flow, a linear stability analysis based on the small disturbance theory was carried out obtaining both the neutral stability curves and the transition point. In the end, for each case, results were presented with the corresponding observations. Additionally, a study on the dependency of the separation point with respect to the injection velocity magnitude was done.

Author(s):  
S. Venkatesh ◽  
S. Rakesh Vimal ◽  
S. Manigandan ◽  
P. Gunasekar

Advanced transport aircraft concept has active boundary-layer control by slot suction which reduces drag by stabilizing the laminar boundary. Thus, the prevention of transition and delaying the boundary layer separation will lead to a higher lift co-efficient. The influence of location and position of suction, suction flow rate and suction hole width on aerodynamic performance have greater influence. These examine the potential payoff for boundary-layer control as applied to the advanced-concept wings. An experimental work deals with the continuous normal suction from the wing upper surface effects on the aerodynamic forces. The wing model with NACA-2412 has been made to achieve normal suction from the wing upper surface by means of four slot channels. The results showed that the continuous normal suction can significantly increase the lift to drag force ratio and this ratio is increasing as the strength of suction increases. There is a convincing decrease in drag and pressure loss and an increase in max lift, which in turn improves the overall performance of the aircraft. While multi-hole suction control can reduce drag much more efficiently than single hole suction control, the position of the suction hole has a greater effect on reducing pressure losses than the suction flow rate.


1960 ◽  
Vol 64 (590) ◽  
pp. 64-80 ◽  
Author(s):  
H. Schlichting

SummaryBoundary layer theory is the cornerstone of our knowledge of the flow of air and other fluids of small viscosity under circumstances of interest in many engineering applications, especially also in aeronautics. Many complex problems in aerodynamics, as for instance the problem of skin friction, which was theoretically attacked very early by F. W. Lanchester, have been clarified by studying the flow within the boundary layer and its effects on the general flow around the body.Research work on boundary layers, as started by Prandtl in 1904. was for the first twenty years—up to Prandtl's Wilbur Wright Memorial Lecture to the Royal Aeronautical Society in 1927—almost entirely restricted to Prandtl's Institute at Göttingen. But since about 1930 boundary layer theory has been generally accepted, and in the past thirty years there has been an almost exponential rise of the number of contributors to its further development.The author tries to trace certain lines, along which this important branch of modern fluid dynamics has developed in the past thirty years. In this connection the following topics are treated to some extent:I.Transition from laminar to turbulent flow.II.Boundary layer control for high lift and low drag of aerofoils.III.Aerodynamic heating at high speed (high Mach numbers).IV.Boundary layer efff cts on swept wings and on rotating bodies.I. The theoretical investigations of the problem of transition start from Reynolds' and Lord Rayleigh's hypothesis of the instability of laminar flow. After many unsuccessful attempts Tollmien, 1930, finally succeeded in calculating the critical Reynolds number for the boundary layer on a flat plate. More than ten years later Tollmien's stability theory was completely confirmed by very careful experiments of Dryden and his co-workers.II. After many wind tunnel experiments the investigations of boundary layer control for high lift of aerofoils led to the construction of two aeroplanes with boundary layer suction at the aerodynamische versuchsanstalt gottingen, in 1938, which were quite successful. later on, also, a considerable reduction of the skin friction of aerofoils was obtained with the advent of the laminar flow aerofoil.III. In flow at high Mach numbers the velocity boundary layer is accompanied by a thermal boundary layer which is caused by frictional heating. The large increase in the temperature of a solid surface in a high speed stream which can be calculated from boundary layer theory only, poses a serious problem to aeronautical engineers (“thermal barrier”).IV. The aerodynamic characteristics of swept wings and Delta wings are largely governed by the behaviour of their boundary layer. Some of the draw-backs of such wing plan forms can be remedied by boundary layer control, as for instance by a “boundary layer fence.” For turbo-machines the influence of the centrifugal forces on the boundary layer plays an important role for their aerodynamic coefficients.


Sign in / Sign up

Export Citation Format

Share Document