Radiative Transfer in a One-Dimensional Single Angle Plant Canopy

1992 ◽  
Vol 112 (3) ◽  
pp. 270-282 ◽  
Author(s):  
B. Ganapol
2010 ◽  
Vol 37 (18) ◽  
pp. n/a-n/a ◽  
Author(s):  
Larry Di Girolamo ◽  
Lusheng Liang ◽  
Steven Platnick

2019 ◽  
Vol 47 (1) ◽  
pp. 67-90 ◽  
Author(s):  
James E. Owen

Exoplanets with substantial hydrogen/helium atmospheres have been discovered in abundance, many residing extremely close to their parent stars. The extreme irradiation levels that these atmospheres experience cause them to undergo hydrodynamic atmospheric escape. Ongoing atmospheric escape has been observed to be occurring in a few nearby exoplanet systems through transit spectroscopy both for hot Jupiters and for lower-mass super-Earths and mini-Neptunes. Detailed hydrodynamic calculations that incorporate radiative transfer and ionization chemistry are now common in one-dimensional models, and multidimensional calculations that incorporate magnetic fields and interactions with the interstellar environment are cutting edge. However, comparison between simulations and observations remains very limited. While hot Jupiters experience atmospheric escape, the mass-loss rates are not high enough to affect their evolution. However, for lower-mass planets, atmospheric escape drives and controls their evolution, sculpting the exoplanet population that we observe today. ▪ Observations of some exoplanets have detected atmospheric escape driven by hydrodynamic outflows, causing the exoplanets to lose mass over time. ▪ Hydrodynamic simulations of atmospheric escape are approaching the sophistication required to compare them directly to observations. ▪ Atmospheric escape sculpts sharp features into the exoplanet population that we can observe today; these features have recently been detected.


1994 ◽  
Author(s):  
Daniel Vanderhaegen ◽  
Claude Deutsch ◽  
Patrick Boissé

2020 ◽  
Author(s):  
Yuma Sakai ◽  
Hideki Kobayashi ◽  
Tomomichi Kato

Abstract. Global terrestrial ecosystems control the atmospheric CO2 concentration through gross primary production (GPP) and ecosystem respiration processes. Chlorophyll fluorescence is one of the energy release pathways of excess incident lights in the photosynthetic process. Over the last ten years, extensive studies have been revealed that canopy scale sun-induced chlorophyll fluorescence (SIF), which potentially provides a direct pathway to link leaf level photosynthesis to global GPP, can be observed from satellites. SIF is used to infer photosynthetic capacity of plant canopy, however, it is not clear how the leaf-level SIF emission contributes to the top of canopy directional SIF. Plant canopy radiative transfer models are the useful tools to understand the causality of directional canopy SIF. One dimensional (1-D) plane parallel layer models (e.g. the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model) have been widely used and are useful to understand the general mechanisms behind the temporal and seasonal variations in SIF. However, due to the lack of complexity of the actual canopy structures, three dimensional models (3-D) have a potential to delineate the realistic directional canopy SIFs. Forest Light Environmental Simulator for SIF (FLiES-SIF) version 1.0 is the 3-D Monte Carlo plant canopy radiative transfer model to understand the biological and physical mechanisms behind the SIF emission from complex forest canopies. In this model description paper, we focused on the model formulation and simulation schemes, and showed some sensitivity analysis against several major variables such as view angle and leaf area index (LAI). The simulation results show that SIF increases with LAI then saturated at LAI > 2–4 depending on the spectral wavelength. The sensitivity analysis also shows that simulated SIF radiation may decrease with LAI at higher LAI domain (LAI > 5). These phenomena are seen in certain sun and view angle conditions. This type of non-linear and non-monotonic SIF behavior to LAI is also related to spatial forest structure patterns. FLiES-SIF version 1.0 can be used to quantify the canopy SIF in various view angles including the contribution of multiple scattering which is the important component in the near infrared domain. The potential use of the model is to standardize the satellite SIF by correcting the bi-directional effect. This step will contribute to the improvement of the GPP estimation accuracy through SIF.


2020 ◽  
Vol 494 (2) ◽  
pp. 2221-2235 ◽  
Author(s):  
Kevin D Wilk ◽  
D John Hillier ◽  
Luc Dessart

ABSTRACT In this study, we present one-dimensional, non-local-thermodynamic-equilibrium, radiative transfer simulations (using cmfgen) in which we introduce micro-clumping at nebular times into two Type Ia supernova ejecta models. We use one sub-Chandrasekhar (sub-MCh) ejecta model with 1.04 M⊙ and one Chandrasekhar (MCh) ejecta model with 1.40 M⊙. We introduce clumping factors f = 0.33, 0.25, and 0.10, which are constant throughout the ejecta, and compare results to the unclumped f = 1.0 case. We find that clumping is a natural mechanism to reduce the ionization of the ejecta, reducing emission from [Fe iii], [Ar iii], and [S iii] by a factor of a few. For decreasing values of the clumping factor f, the [Ca ii] λλ7291,7324 doublet became a dominant cooling line for our MCh model but remained weak in our sub-MCh model. Strong [Ca ii] λλ7291,7324 indicates non-thermal heating in that region and may constrain explosion modelling. Due to the low abundance of stable nickel, our sub-MCh model never showed the [Ni ii] 1.939-μm diagnostic feature for all clumping values.


2002 ◽  
Vol 124 (4) ◽  
pp. 674-684 ◽  
Author(s):  
Zekeriya Altac¸

A high order approximation, the SKN method—a mnemonic for synthetic kernel—is proposed for solving radiative transfer problems in participating medium. The method relies on approximating the integral transfer kernel by a sum of exponential kernels. The radiative integral equation is then reducible to a set of coupled second-order differential equations. The method is tested for one-dimensional plane-parallel participating medium. Three quadrature sets are proposed for the method, and the convergence of the method with the proposed sets is explored. The SKN solutions are compared with the exact, PN, and SN solutions. The SK1 and SK2 approximations using quadrature Set-2 possess the capability of solving radiative transfer problems in optically thin systems.


2020 ◽  
Author(s):  
Fabian Jakub ◽  
Bernhard Mayer

<pre class="moz-quote-pre">Recent studies have shown that the effects of three dimensional radiative transfer may impact cloud formation and precipitation. While one-dimensional solvers are favoured due to their computational simplicity, they do however neglect any horizontal energy transport. In particular, the 1D approximation neglects 3D effects such as cloud side illumination and the displacement of the cloud's shadow at the surface which are relevant whenever the sun is not in the zenith. This has a detrimental effect on the results of high resolution simulations. 3D radiative transfer has the potential to considerably change the boundary layer dynamics, the evolution of clouds, their lifetime and precipitation onset. To this date, studies that investigate the influence of 3D effects on realistic NWP settings are rare, primarily because there haven't been 3D radiative transfer solvers around that were fast enough to be run interactively in a forecast simulation. For that purpose we adapted the TenStream solver (parallel 3D radiative transfer solver for LES) to unstructured meshes and coupled it to ICON-LEM. We will present the new solver in the context of ICON-LEM simulations, the methodologies used and its characteristics.</pre>


This paper sets out a formal theory of radiative transfer in one-dimensional scattering media of arbitrary physical constitution. The theory is based on an extension of the treatment of Redheffer, in which the response of a layer of arbitrary thickness to fluxes incident on its boundaries is described by a certain linear operator. Juxtaposition of two such layers gives a third layer, whose operator can be related to those of its constituents by an operation designated as the star product. It is shown that this set of operators constitutes a semigroup under the star product, and that the infinitesimal generators of the semigroup can be computed in term s of the physical properties of the medium , point by point. This makes it possible to write equivalent discrete and differential equations from both of which transmission and reflexion operators, the emission due to internal sources, and the internal fluxes at prescribed levels in the medium can be obtained.


Sign in / Sign up

Export Citation Format

Share Document