atmospheric escape
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 85)

H-INDEX

25
(FIVE YEARS 7)

2022 ◽  
Vol 163 (2) ◽  
pp. 40
Author(s):  
Anusha Pai Asnodkar ◽  
Ji Wang ◽  
B. Scott Gaudi ◽  
P. Wilson Cauley ◽  
Jason D. Eastman ◽  
...  

Abstract Transiting hot Jupiters present a unique opportunity to measure absolute planetary masses due to the magnitude of their radial velocity signals and known orbital inclination. Measuring planet mass is critical to understanding atmospheric dynamics and escape under extreme stellar irradiation. Here we present the ultrahot Jupiter system KELT-9 as a double-lined spectroscopic binary. This allows us to directly and empirically constrain the mass of the star and its planetary companion without reference to any theoretical stellar evolutionary models or empirical stellar scaling relations. Using data from the PEPSI, HARPS-N, and TRES spectrographs across multiple epochs, we apply least-squares deconvolution to measure out-of-transit stellar radial velocities. With the PEPSI and HARPS-N data sets, we measure in-transit planet radial velocities using transmission spectroscopy. By fitting the circular orbital solution that captures these Keplerian motions, we recover a planetary dynamical mass of 2.17 ± 0.56 M J and stellar dynamical mass of 2.11 ± 0.78 M ⊙, both of which agree with the discovery paper. Furthermore, we argue that this system, as well as systems like it, are highly overconstrained, providing multiple independent avenues for empirically cross-validating model-independent solutions to the system parameters. We also discuss the implications of this revised mass for studies of atmospheric escape.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Kazunori Ogohara ◽  
Hiromu Nakagawa ◽  
Shohei Aoki ◽  
Toru Kouyama ◽  
Tomohiro Usui ◽  
...  

AbstractJapan Aerospace Exploration Agency (JAXA) plans a Phobos sample return mission (MMX: Martian Moons eXploration). In this study, we review the related works on the past climate of Mars, its evolution, and the present climate and weather to describe the scientific goals and strategies of the MMX mission regarding the evolution of the Martian surface environment. The MMX spacecraft will retrieve and return a sample of Phobos regolith back to Earth in 2029. Mars ejecta are expected to be accumulated on the surface of Phobos without being much shocked. Samples from Phobos probably contain all types of Martian rock from sedimentary to igneous covering all geological eras if ejecta from Mars could be accumulated on the Phobos surface. Therefore, the history of the surface environment of Mars can be restored by analyzing the returned samples. Remote sensing of the Martian atmosphere and monitoring ions escaping to space while the spacecraft is orbiting Mars in the equatorial orbit are also planned. The camera with multi-wavelength filters and the infrared spectrometer onboard the spacecraft can monitor rapid transport processes of water vapor, dust, ice clouds, and other species, which could not be traced by the previous satellites on the sun-synchronous polar orbit. Such time-resolved pictures of the atmospheric phenomena should be an important clue to understand both the processes of water exchange between the surface/underground reservoirs and the atmosphere and the drivers of efficient material transport to the upper atmosphere. The mass spectrometer with unprecedented mass resolution can observe ions escaping to space and monitor the atmospheric escape which has made the past Mars to evolve towards the cold and dry surface environment we know today. Together with the above two instruments, it can potentially reveal what kinds of atmospheric events can transport tracers (e.g., H2O) upward and enhance the atmospheric escape. Graphical Abstract


2021 ◽  
Vol 162 (6) ◽  
pp. 284
Author(s):  
J. J. Spake ◽  
A. Oklopčić ◽  
L. A. Hillenbrand

Abstract Understanding the effects of high-energy radiation and stellar winds on planetary atmospheres is vital for explaining the observed properties of close-in exoplanets. Observations of transiting exoplanets in the triplet of metastable helium lines at 10830 Å allow extended atmospheres and escape processes to be studied for individual planets. We observed one transit of WASP-107b with NIRSPEC on Keck at 10830 Å. Our observations, for the first time, had significant posttransit phase coverage, and we detected excess absorption for over an hour after fourth contact. The data can be explained by a comet-like tail extending out to ∼7 planet radii, which corresponds to roughly twice the Roche lobe radius of the planet. Planetary tails are expected based on three-dimensional simulations of escaping exoplanet atmospheres, particularly those including the interaction between the escaped material and strong stellar winds, and have been previously observed at 10830 Å in at least one other exoplanet. With both the largest midtransit absorption signal and the most extended tail observed at 10830 Å, WASP-107b remains a keystone exoplanet for atmospheric escape studies.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Hessa Almatroushi ◽  
Hoor AlMazmi ◽  
Noora AlMheiri ◽  
Mariam AlShamsi ◽  
Eman AlTunaiji ◽  
...  

AbstractThe Emirates Mars Mission (EMM) – Hope Probe – was developed to understand Mars atmospheric circulation, dynamics, and processes through characterization of the Mars atmosphere layers and its interconnections enabled by a unique high-altitude (19,970 km periapse and 42,650 km apoapse) low inclination orbit that will offer an unprecedented local and seasonal time coverage over most of the planet. EMM has three scientific objectives to (A) characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability, (B) correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere, and (C) characterize the spatial structure and variability of key constituents in the Martian exosphere. The EMM data products include a variety of spectral and imaging data from three scientific instruments measuring Mars at visible, ultraviolet, and infrared wavelengths and contemporaneously and globally sampled on both diurnal and seasonal timescale. Here, we describe our strategies for addressing each objective with these data in addition to the complementary science data, tools, and physical models that will facilitate our understanding. The results will also fill a unique role by providing diagnostics of the physical processes driving atmospheric structure and dynamics, the connections between the lower and upper atmospheres, and the influences of these on atmospheric escape.


2021 ◽  
Vol 162 (6) ◽  
pp. 256
Author(s):  
Ian Wong ◽  
Avi Shporer ◽  
George Zhou ◽  
Daniel Kitzmann ◽  
Thaddeus D. Komacek ◽  
...  

Abstract We report the discovery of an ultrahot Jupiter with an extremely short orbital period of 0.67247414 ± 0.00000028 days (∼16 hr). The 1.347 ± 0.047 R Jup planet, initially identified by the Transiting Exoplanet Survey Satellite (TESS) mission, orbits TOI-2109 (TIC 392476080)—a T eff ∼ 6500 K F-type star with a mass of 1.447 ± 0.077 M ☉, a radius of 1.698 ± 0.060 R ☉, and a rotational velocity of v sin i * = 81.9 ± 1.7 km s−1. The planetary nature of TOI-2109b was confirmed through radial-velocity measurements, which yielded a planet mass of 5.02 ± 0.75 M Jup. Analysis of the Doppler shadow in spectroscopic transit observations indicates a well-aligned system, with a sky-projected obliquity of λ = 1.°7 ± 1.°7. From the TESS full-orbit light curve, we measured a secondary eclipse depth of 731 ± 46 ppm, as well as phase-curve variations from the planet’s longitudinal brightness modulation and ellipsoidal distortion of the host star. Combining the TESS-band occultation measurement with a K s -band secondary eclipse depth (2012 ± 80 ppm) derived from ground-based observations, we find that the dayside emission of TOI-2109b is consistent with a brightness temperature of 3631 ± 69 K, making it the second hottest exoplanet hitherto discovered. By virtue of its extreme irradiation and strong planet–star gravitational interaction, TOI-2109b is an exceptionally promising target for intensive follow-up studies using current and near-future telescope facilities to probe for orbital decay, detect tidally driven atmospheric escape, and assess the impacts of H2 dissociation and recombination on the global heat transport.


2021 ◽  
Vol 2 (6) ◽  
pp. 230
Author(s):  
Noah Jäggi ◽  
Diana Gamborino ◽  
Dan J. Bower ◽  
Paolo A. Sossi ◽  
Aaron S. Wolf ◽  
...  

Abstract MESSENGER observations suggest a magma ocean formed on proto-Mercury, during which evaporation of metals and outgassing of C- and H-bearing volatiles produced an early atmosphere. Atmospheric escape subsequently occurred by plasma heating, photoevaporation, Jeans escape, and photoionization. To quantify atmospheric loss, we combine constraints on the lifetime of surficial melt, melt composition, and atmospheric composition. Consideration of two initial Mercury sizes and four magma ocean compositions determines the atmospheric speciation at a given surface temperature. A coupled interior–atmosphere model determines the cooling rate and therefore the lifetime of surficial melt. Combining the melt lifetime and escape flux calculations provides estimates for the total mass loss from early Mercury. Loss rates by Jeans escape are negligible. Plasma heating and photoionization are limited by homopause diffusion rates of ∼106 kg s−1. Loss by photoevaporation depends on the timing of Mercury formation and assumed heating efficiency and ranges from ∼106.6 to ∼109.6 kg s−1. The material for photoevaporation is sourced from below the homopause and is therefore energy limited rather than diffusion limited. The timescale for efficient interior–atmosphere chemical exchange is less than 10,000 yr. Therefore, escape processes only account for an equivalent loss of less than 2.3 km of crust (0.3% of Mercury’s mass). Accordingly, ≤0.02% of the total mass of H2O and Na is lost. Therefore, cumulative loss cannot significantly modify Mercury’s bulk mantle composition during the magma ocean stage. Mercury’s high core:mantle ratio and volatile-rich surface may instead reflect chemical variations in its building blocks resulting from its solar-proximal accretion environment.


2021 ◽  
Author(s):  
Manuel Scherf ◽  
Herbert Lichtenegger ◽  
Sergey Dyadechkin ◽  
Helmut Lammer ◽  
Raven Adam ◽  
...  

<p>Mars likely had a denser atmosphere during the Noachian eon about 3.6 to 4.0 billion years ago (Ga). How dense this atmosphere might have been, and which escape mechanisms dominated its loss are yet not entirely clear. However, non-thermal escape processes and potential sequestration into the ground are believed to be the main drivers for atmospheric loss from the present to about 4.1 Ga.</p> <p>To evaluate non-thermal escape over the last ~4.1 billion years, we simulated the ion escape of Mars' CO<sub>2</sub> atmosphere caused by its dissociation products C and O atoms with numerical models of the upper atmosphere and its interaction with the solar wind (see Lichtenegger et al. 2021; https://arxiv.org/abs/2105.09789). We use the planetward-scattered pick-up ions for sputtering estimates of exospheric particles including <sup>36</sup>Ar and <sup>38</sup>Ar isotopes, and compare ion escape, with sputtering and photochemical escape rates. For solar EUV fluxes ≥3 times the present-day Sun (earlier than ~2.6 Ga) ion escape becomes the dominant atmospheric non-thermal loss process until thermal escape takes over during the pre-Noachian eon (earlier than ~4.0 - 4.1 Ga). If we extrapolate the total escape of CO<sub>2</sub>-related dissociation products back in time until ~4.1 Ga, we obtain a theoretical equivalent to CO<sub>2</sub> partial pressure of more than ~3 bar, but this amount did not necessarily have to be present and represents a maximum that could have been lost to space within the last ~4.1 Ga.</p> <p>Argon isotopes can give an additional insight into the evolution of the Martian atmosphere. The fractionation of <sup>36</sup>Ar/<sup>38</sup>Ar isotopes through sputtering and volcanic outgassing from its initial chondritic value of 5.3, as measured in the 4.1 billion years old Mars meteorite ALH 84001, until the present day can be reproduced for assumed CO<sub>2</sub> partial pressures between ~0.2-3.0 bar, depending on the cessation time of the Martian dynamo (assumed between 3.6-4.0 Ga) - if atmospheric sputtering of Ar started afterwards. The later the dynamo ceased away, the lower the pressure could have been to reproduce <sup>36</sup>Ar/<sup>38</sup>Ar.</p> <p>Prior to ~4.1 Ga (i.e., during the pre-Noachian eon), thermal escape should have been the most important driver of atmospheric escape at Mars, and together with non-thermal losses, might have prevented a stable and dense CO<sub>2</sub> atmosphere during the first ~400 million years. Our results indicate that, while Mars could have been warm and wet at least sporadically between ~3.6-4.1 Ga, it likely has been cold and dry during the pre-Noachian eon (see also Scherf and Lammer 2021; https://arxiv.org/abs/2102.05976).</p>


2021 ◽  
Author(s):  
Amy Louca ◽  
Yamila Miguel ◽  
Shang-Min Tsai

<p class="p1">Observations of exoplanets used to characterize the chemistry and dynamics of atmospheres have developed considerably throughout the years. Nonetheless, it remains a difficult task to give a full and detailed description using solely observations. With future space missions such as JWST and ARIEL, both expected to be launched within this decade, it becomes even more crucial to be able to fully explain and predict the underlying chemistry and physics involved. In this research, we focus on modeling star-planet interactions by using synthetic flare spectra to predict chemical tracers for future missions. We make use of a chemical kinetics code that includes synthetic time-dependent stellar spectra and thermal atmospheric escape to simulate the atmospheres of known exoplanets. Using a radiative transfer model we then retrieve emission spectra. This ongoing study is focused on various known planetary systems of which the stellar spectrum has been obtained by the (mega-)MUSCLES collaboration. Preliminary results on these systems show that stellar flares and thermal escape can have a significant effect on the chemistry in atmospheres. </p>


2021 ◽  
Author(s):  
Daria Kubyshkina ◽  
Aline Vidotto

<p>The evolution of the atmospheres of low and intermediate-mass planets is strongly connected to the physical properties of their host stars. The types and the past activities of planet-hosting stars can, therefore, affect the overall planetary population. We perform a comparative study of sub-Neptune-like planets orbiting stars of different masses and different evolutionary histories. As a model of atmospheric evolution, we employ our own framework combining planetary evolution in MESA with a realistic prescription of the escape of hydrogen-dominated atmospheres. We discuss general patterns of the evolved population as a function of planetary and stellar parameters. The final populations look qualitatively similar in terms of the atmospheres' survival around different stars, but quantitatively different, with this difference accentuated for planets orbiting more massive stars. We will discuss the potential input from different atmospheric escape mechanisms in shaping these populations.</p>


2021 ◽  
Author(s):  
Manuel Lampón ◽  
Manuel López-Puertas ◽  
Alejandro Sánchez-López ◽  
Stefan Czesla ◽  
Jorge Sanz-Forcada ◽  
...  

<p>Hydrodynamic escape is the most efficient atmospheric mechanism of planetary mass loss and has a large impact on planetary evolution. However, the lack of observations remained this mechanism poorly understood. Therefore, new observations of the He I triplet at 10830 Å provide key information to advance hydrodynamic escape knowledge. In this work, we analyse the hydrodynamic escape of three exoplanets, HD209458 b, HD189733 b, and GJ 3470 b via an analysis of He triplet absorptions recently observed by the CARMENES high-resolution spectrograph, and their available Ly-alpha measurements, involving a 1D hydrodynamic model. We characterise the main upper atmospheric parameters, e.g.,  the temperature, the composition (H/He ratio), and the radial outflow velocity. We also study their hydrodynamic regime and show that HD209458 b is in the energy-limited regime, HD189733 b is in the recombination-limited regime, and GJ 3470 b is in the photon-limited regime. Details of this work can be found in [1], [2], [3].</p><p>References</p><p>[1] Lampón, M., López-Puertas, M., Lara, L.M., et al. 2020, A&A, 636, A13<br>[2] Lampón, M., López-Puertas, M., Sanz-Forcada, J., et al. 2021, A&A, 647, A129<br>[3] Lampón, M., López-Puertas, M., Czesla, S., et al. 2021, A&A, 648, L7</p>


Sign in / Sign up

Export Citation Format

Share Document