lower mass
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 98)

H-INDEX

18
(FIVE YEARS 9)

2022 ◽  
Vol 924 (1) ◽  
pp. 12
Author(s):  
Farhanul Hasan ◽  
Christopher W. Churchill ◽  
Bryson Stemock ◽  
Nikole M. Nielsen ◽  
Glenn G. Kacprzak ◽  
...  

Abstract We use the observed cumulative statistics of C iv absorbers and dark matter halos to infer the distribution of C iv-absorbing gas relative to galaxies at redshifts 0 ≤ z ≤ 5. We compare the cosmic incidence dN/dX of C iv absorber populations and galaxy halos, finding that massive L ≥ L ⋆ halos alone cannot account for all the observed W r ≥ 0.05 Å absorbers. However, the dN/dX of lower-mass halos exceeds that of W r ≥ 0.05 Å absorbers. We also estimate the characteristic gas radius of absorbing structures required for the observed C iv dN/dX, assuming each absorber is associated with a single galaxy halo. The W r ≥ 0.3 Å and W r ≥ 0.6 Å C iv gas radii are ∼30%–70% (∼20%–40%) of the virial radius of L ⋆ (0.1L ⋆) galaxies, and the W r ≥ 0.05 Å gas radius is ∼100%–150% (∼60%–100%) of the virial radius of L ⋆ (0.1L ⋆) galaxies. For stronger absorbers, the gas radius relative to the virial radius rises across Cosmic Noon and falls afterwards, while for weaker absorbers, the relative gas radius declines across Cosmic Noon and then dramatically rises at z < 1. A strong luminosity-dependence of the gas radius implies highly extended C iv envelopes around massive galaxies before Cosmic Noon, while a luminosity-independent gas radius implies highly extended envelopes around dwarf galaxies after Cosmic Noon. From available absorber-galaxy and C iv evolution data, we favor a scenario in which low-mass galaxies enrich the volume around massive galaxies at early epochs and propose that the outer halo gas (>0.5 R v ) was produced primarily in ancient satellite dwarf galaxy outflows, while the inner halo gas (<0.5 R v ) originated from the central galaxy and persists as recycled accreting gas.


2022 ◽  
Vol 924 (2) ◽  
pp. 88
Author(s):  
Seonho Kim ◽  
Kwang Hyun Sung ◽  
Kyujin Kwak

Abstract The isotopic compositions of ruthenium (Ru) are measured from presolar silicon carbide (SiC) grains. In a popular scenario, the presolar SiC grains formed in the outskirt of an asymptotic giant branch (AGB) star, left the star as a stellar wind, and joined the presolar molecular cloud from which the solar system formed. The Ru isotopes formed inside the star, moved to the stellar surface during the AGB phase, and were locked into the SiC grains. Following this scenario, we analyze the Nucleosynthesis Grid (NuGrid) data, which provide the abundances of the Ru isotopes in the stellar wind for a set of stars in a wide range of initial masses and metallicities. We apply the C > O (carbon abundance larger than the oxygen abundance) condition, which is commonly adopted for the condition of the SiC formation in the stellar wind. The NuGrid data confirm that SiC grains do not form in the winds of massive stars. The isotopic compositions of Ru in the winds of low-mass stars can explain the measurements. We find that lower-mass stars (1.65 M ☉ and 2 M ☉) with low metallicity (Z = 0.0001) can explain most of the measured isotopic compositions of Ru. We confirm that the abundance of 99 Ru inside the presolar grain includes the contribution from the in situ decay of 99 Tc. We also verify our conclusion by comparing the isotopic compositions of Ru integrated over all the pulses with those calculated at individual pulses.


2021 ◽  
Vol 14 (1) ◽  
pp. 237-250
Author(s):  
L. Garba ◽  
E. A. Chidi ◽  
F.S. Koki

Thermonuclear conditions found in explosive massive-stars requirethe use of not only efficient, accurate but thermodynamically consistent stellar equation of state (EOS) routines.The use of tables to describe EoS involved in stellar models is very much needed in understanding the final fate of massive stars. Many massive-low metallicity stars end their life as pair creation supernova (PCSN) through the creation of electron-positron pairs.We used thermodynamically consistent EoS tables to numerically evaluate the thermonuclear effects of the electron electron-positron pair creation in rotating 150 and 200 Massive starsat SMC and rotating and non-rotating 500 M⊙at LMC.As expected, the effect of rotationofreducing the oxygen core masshad increasedthe thermal energy within the threshold of the pair-creation instability.Similarly, lower mass loss stars with SMC model produced higher thermal energies,which can cmpletely explode the stars as PCSNe without remnant.On the other hand, the non-rotating 500 M⊙ might have only reached the instability region due to its lower metallicity (compared to solar metallicity) that iscapable of suppressing the mass loss such that the thermonuclear energy maintains certain amount of elements into the pair creation region. At the final explosion of the stars, the helium core mass educed the thermal energies in trying to avoid the pair-creation region. Many implications of these results for the evolution and explosion of massive stars are discussed.


2021 ◽  
Vol 923 (2) ◽  
pp. 137
Author(s):  
Stephanie H. Ho ◽  
Crystal L. Martin ◽  
Joop Schaye

Abstract The high incidence rate of the O vi λλ1032, 1038 absorption around low-redshift, ∼L * star-forming galaxies has generated interest in studies of the circumgalactic medium. We use the high-resolution EAGLE cosmological simulation to analyze the circumgalactic O vi gas around z ≈ 0.3 star-forming galaxies. Motivated by the limitation that observations do not reveal where the gas lies along the line of sight, we compare the O vi measurements produced by gas within fixed distances around galaxies and by gas selected using line-of-sight velocity cuts commonly adopted by observers. We show that gas selected by a velocity cut of ±300 km s−1 or ±500 km s−1 produces a higher O vi column density, a flatter column density profile, and a higher covering fraction compared to gas within 1, 2, or 3 times the virial radius (r vir) of galaxies. The discrepancy increases with impact parameter and worsens for lower-mass galaxies. For example, compared to the gas within 2 r vir, identifying the gas using velocity cuts of 200–500 km s−1 increases the O vi column density by 0.2 dex (0.1 dex) at 1 r vir to over 0.75 dex (0.7 dex) at ≈ 2 r vir for galaxies with stellar masses of 109–109.5 M ⊙ (1010–1010.5 M ⊙). We furthermore estimate that excluding O vi outside r vir decreases the circumgalactic oxygen mass measured by Tumlinson et al. (2011) by over 50%. Our results demonstrate that gas at large line-of-sight separations but selected by conventional velocity windows has significant effects on the O vi measurements and may not be observationally distinguishable from gas near the galaxies.


2021 ◽  
Vol 923 (1) ◽  
pp. 56
Author(s):  
Daniel DeFelippis ◽  
Nicolas F. Bouché ◽  
Shy Genel ◽  
Greg L. Bryan ◽  
Dylan Nelson ◽  
...  

Abstract The circumgalactic medium (CGM) contains information on gas flows around galaxies, such as accretion and supernova-driven winds, which are difficult to constrain from observations alone. Here, we use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to study the properties and kinematics of the CGM around star-forming galaxies in 1011.5–1012 M ⊙ halos at z ≃ 1 using mock Mg ii absorption lines, which we generate by postprocessing halos to account for photoionization in the presence of a UV background. We find that the Mg ii gas is a very good tracer of the cold CGM, which is accreting inward at inflow velocities of up to 50 km s−1. For sight lines aligned with the galaxy’s major axis, we find that Mg ii absorption lines are kinematically shifted due to the cold CGM’s significant corotation at speeds up to 50% of the virial velocity for impact parameters up to 60 kpc. We compare mock Mg ii spectra to observations from the MusE GAs FLow and Wind (MEGAFLOW) survey of strong Mg ii absorbers (EW2796 Å 0 > 0.5 Å). After matching the equivalent-width (EW) selection, we find that the mock Mg ii spectra reflect the diversity of observed kinematics and EWs from MEGAFLOW, even though the sight lines probe a very small fraction of the CGM. Mg ii absorption in higher-mass halos is stronger and broader than in lower-mass halos but has qualitatively similar kinematics. The median-specific angular momentum of the Mg ii CGM gas in TNG50 is very similar to that of the entire CGM and only differs from non-CGM components of the halo by normalization factors of ≲1 dex.


2021 ◽  
Vol 923 (1) ◽  
pp. 126
Author(s):  
Johan Samsing ◽  
Kenta Hotokezaka

Abstract Theory and observations suggest that single-star evolution is not able to produce black holes with masses in the range 3–5M ⊙ and above ∼45M ⊙, referred to as the lower mass gap and the upper mass gap, respectively. However, it is possible to form black holes in these gaps through mergers of compact objects in, e.g., dense clusters. This implies that if binary mergers are observed in gravitational waves with at least one mass-gap object, then either clusters are effective in assembling binary mergers, or our single-star models have to be revised. Understanding how effective clusters are at populating both mass gaps have therefore major implications for both stellar and gravitational wave astrophysics. In this paper we present a systematic study of how efficient stellar clusters are at populating both mass gaps through in-cluster mergers. For this, we derive a set of closed form relations for describing the evolution of compact object binaries undergoing dynamical interactions and mergers inside their cluster. By considering both static and time-evolving populations, we find in particular that globular clusters are clearly inefficient at populating the lower mass gap in contrast to the upper mass gap. We further describe how these results relate to the characteristic mass, time, and length scales associated with the problem.


2021 ◽  
Vol 923 (2) ◽  
pp. 143
Author(s):  
Jubee Sohn ◽  
Margaret J. Geller ◽  
Ho Seong Hwang ◽  
Antonaldo Diaferio ◽  
Kenneth J. Rines ◽  
...  

Abstract We apply a friends-of-friends (FoF) algorithm to identify galaxy clusters and we use the catalog to explore the evolutionary synergy between brightest cluster galaxies (BCGs) and their host clusters. We base the cluster catalog on the dense HectoMAP redshift survey (2000 redshifts deg−2). The HectoMAP FoF catalog includes 346 clusters with 10 or more spectroscopic members within the range 0.05 < z < 0.55 and with a median z = 0.29. We list these clusters and their members. We also include central velocity dispersions (σ *,BCG) for the FoF cluster BCGs, a distinctive feature of the HectoMAP FoF catalog. HectoMAP clusters with higher galaxy number density (80 systems) are all genuine clusters with a strong concentration and a prominent BCG in Subaru/Hyper Suprime-Cam images. The phase-space diagrams show the expected elongation along the line of sight. Lower-density systems include some low reliability systems. We establish a connection between BCGs and their host clusters by demonstrating that σ *,BCG /σ cl decreases as a function of cluster velocity dispersion (σ cl), in contrast, numerical simulations predict a constant σ *,BCG/σ cl. Sets of clusters at two different redshifts show that BCG evolution in massive systems is slow over the redshift range z < 0.4. The data strongly suggest that minor mergers may play an important role in BCG evolution in clusters with σ cl ≳ 300 km s−1. For lower mass systems (σ cl < 300 km s−1), major mergers may play a significant role. The coordinated evolution of BCGs and their host clusters provides an interesting test of simulations in high-density regions of the universe.


2021 ◽  
Vol 2021 (10) ◽  
pp. 045
Author(s):  
Francesco D'Eramo ◽  
Alessandro Lenoci
Keyword(s):  

2021 ◽  
Author(s):  
Gina Clarise Johnson ◽  
Samuel Degregori ◽  
Paul H Barber ◽  
Daniel T Blumstein

Body condition is an important life history challenge that directly impacts individual fitness and is particularly important for hibernating animals, whose maintenance of adequate body fat and mass is essential for survival. It is well documented that symbiotic microorganisms play a vital role in animal physiology and behaviour. Recent work demonstrates that gut microbes are associated with fat accumulation and obesity; Firmicutes is consistently associated with obesity while Bacteroidetes is associated with leanness both in humans and other animals.The focus of most microbiome studies has been on human health or involved lab reared animals used as a model system. However, these microbes likely are important for individual fitness in wild populations and provide potential mechanistic insights into the adaptability and survival of wildlife. Here we test whether symbiotic microorganisms within the phyla of Firmicutes and Bacteroidetes are associated with summer mass gain in an exceptionally well-studied wild population of yellow-bellied marmots (Marmota flaviventer) by quantifying microbial abundance over five years of fecal samples (2015 - 2019) collected during their summer active season. Results show that marmots with higher mass gain rates have a greater abundance of Firmicutes. In contrast, higher abundance of Bacteroidetes was associated with lower mass gain rates, but only for marmots living in harsher environments. Similar patterns were found at the family level where Ruminococcaceae, a member of Firmicutes, was associated with higher mass gain rates, and Muribaculaceae, a member of Bacteroidetes, was associated with lower mass gain rates, and similarly in harsher environments. Although correlative, these results highlight the importance of symbiotic gut microbiota to mass gain in the wild, a trait associated with survival and fitness in many taxonomic groups.


2021 ◽  
Vol 118 (39) ◽  
pp. e2101155118
Author(s):  
Zhen Tian ◽  
Tomáš Magna ◽  
James M. D. Day ◽  
Klaus Mezger ◽  
Erik E. Scherer ◽  
...  

The abundances of water and highly to moderately volatile elements in planets are considered critical to mantle convection, surface evolution processes, and habitability. From the first flyby space probes to the more recent “Perseverance” and “Tianwen-1” missions, “follow the water,” and, more broadly, “volatiles,” has been one of the key themes of martian exploration. Ratios of volatiles relative to refractory elements (e.g., K/Th, Rb/Sr) are consistent with a higher volatile content for Mars than for Earth, despite the contrasting present-day surface conditions of those bodies. This study presents K isotope data from a spectrum of martian lithologies as an isotopic tracer for comparing the inventories of highly and moderately volatile elements and compounds of planetary bodies. Here, we show that meteorites from Mars have systematically heavier K isotopic compositions than the bulk silicate Earth, implying a greater loss of K from Mars than from Earth. The average “bulk silicate” δ41K values of Earth, Moon, Mars, and the asteroid 4-Vesta correlate with surface gravity, the Mn/Na “volatility” ratio, and most notably, bulk planet H2O abundance. These relationships indicate that planetary volatile abundances result from variable volatile loss during accretionary growth in which larger mass bodies preferentially retain volatile elements over lower mass objects. There is likely a threshold on the size requirements of rocky (exo)planets to retain enough H2O to enable habitability and plate tectonics, with mass exceeding that of Mars.


Sign in / Sign up

Export Citation Format

Share Document