Experimental and Computational Assessment of Core Bypass Flow in Block-Type Very High Temperature Reactor

2011 ◽  
Vol 175 (2) ◽  
pp. 419-434 ◽  
Author(s):  
Su-Jong Yoon ◽  
Chang-Yong Jin ◽  
Min-Hwan Kim ◽  
Goon-Cherl Park
2010 ◽  
Vol 76 (764) ◽  
pp. 383-385 ◽  
Author(s):  
Taiju SHIBATA ◽  
Junya SUMITA ◽  
Taiyo MAKITA ◽  
Takashi TAKAGI ◽  
Eiji KUNIMOTO ◽  
...  

Author(s):  
Christine Mansilla ◽  
Michel Dumas ◽  
Franc¸ois Werkoff

Generation IV nuclear reactors will not be implemented unless they enable lower production costs than with the current systems. In such a context a techno-economic optimization method was developed and then applied to the power conversion system of a very high temperature reactor. Techno-economic optimization consists in minimizing an objective function that depends on technical variables and economic ones. The advantage of the techno-economic optimization is that it can take into account both investment costs and operating costs. A techno-economic model was implemented in a specific optimization software named Vizir, which is based on genetic algorithms. The calculation of the thermodynamic cycle is performed by a software named Tugaz. The results are the values of the decision variables that lead to a minimum cost, according to the model. The total production cost is evaluated. The influence of the various variables and constraints is also pointed out.


Sign in / Sign up

Export Citation Format

Share Document