Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 2. Critical evaluation and recommended property values (IUPAC Technical Report)

2009 ◽  
Vol 81 (5) ◽  
pp. 791-828 ◽  
Author(s):  
Robert D. Chirico ◽  
Vladimir Diky ◽  
Joseph W. Magee ◽  
Michael Frenkel ◽  
Kenneth N. Marsh

This article is a product of IUPAC Project 2002-005-1-100 (Thermodynamics of ionic liquids, ionic liquid mixtures, and the development of standardized systems). Experimental results of thermodynamic, transport, and phase equilibrium studies made on a reference sample of the ionic liquid 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide are summarized, compared, and critically evaluated to provide recommended values with uncertainties for the properties measured. Properties measured included thermal properties (triple-point temperature, glass-transition temperature, enthalpy of fusion, heat capacities of condensed states), volumetric properties, speeds of sound, viscosities, electrolytic conductivities, relative permittivities, as well as properties for mixtures, such as gas solubilities (solubility pressures), solute activity coefficients at infinite dilution, and liquid-liquid equilibrium temperatures. Recommended values with uncertainties are provided for the properties studied experimentally. The effect of the presence of water on the property values is discussed.

2009 ◽  
Vol 81 (5) ◽  
pp. 781-790 ◽  
Author(s):  
Kenneth N. Marsh ◽  
Joan F. Brennecke ◽  
Robert D. Chirico ◽  
Michael Frenkel ◽  
Andreas Heintz ◽  
...  

This article summarizes the results of IUPAC Project 2002-005-1-100 (Thermodynamics of ionic liquids, ionic liquid mixtures, and the development of standardized systems). The methods used by the various contributors to measure the thermophysical and phase equilibrium properties of the reference sample of the ionic liquid 1-hexyl-3-methylimidazolium bis [(trifluoromethyl)sulfonyl]amide and its mixtures are summarized along with the uncertainties estimated by the contributors. Some results not previously published are presented. Properties of the pure ionic liquid included thermal properties (triple-point temperature, glass-transition temperature, enthalpy of fusion, heat capacities of condensed states), volumetric properties, speeds of sound, viscosities, electrolytic conductivities, and relative permittivities. Properties for mixtures included gas solubilities, solute activity coefficients at infinite dilution, liquid-liquid equilibrium temperatures, and excess volumes. The companion article (Part 2) provides a critical evaluation of the data and recommended values with estimated combined expanded uncertainties.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ala Bazyleva ◽  
William E. Acree ◽  
Robert D. Chirico ◽  
Vladimir Diky ◽  
Glenn T. Hefter ◽  
...  

Abstract This article is the first of three projected IUPAC Technical Reports resulting from IUPAC Project 2011-037-2-100 (Reference Materials for Phase Equilibrium Studies). The goal of this project is to select reference systems with critically evaluated property values for the validation of instruments and techniques used in phase equilibrium studies of mixtures. This report proposes seven systems for liquid–liquid equilibrium studies, covering the four most common categories of binary mixtures: aqueous systems of moderate solubility, non-aqueous systems, systems with low solubility, and systems with ionic liquids. For each system, the available literature sources, accepted data, smoothing equations, and estimated uncertainties are given.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


Author(s):  
Daniel C Morris ◽  
Stuart W Prescott ◽  
Jason B Harper

A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient...


RSC Advances ◽  
2015 ◽  
Vol 5 (63) ◽  
pp. 51407-51412 ◽  
Author(s):  
Anna S. Ivanova ◽  
Thomas Brinzer ◽  
Elliot A. Roth ◽  
Victor A. Kusuma ◽  
John D. Watkins ◽  
...  

A simple binary system of compounds resembling short-chain versions of popular ionic liquids has been shown to have alloying properties.


Sign in / Sign up

Export Citation Format

Share Document