Catalytic activation of nitrogen derivatives with transition-metal complexes

2006 ◽  
Vol 78 (2) ◽  
pp. 363-375 ◽  
Author(s):  
Hélène Lebel ◽  
Olivier Leogane ◽  
Kim Huard ◽  
Sylvain Lectard

Studies regarding the transition-metal-catalyzed decomposition of nitrogen derivatives toward Curtius rearrangement and the formation of nitrenes which undergo C-H insertion and aziridination reactions are presented. These processes lead to the formation of C-N bond with a high level of selectivity and efficiency.

2021 ◽  
Vol 17 ◽  
Author(s):  
Austin Pounder ◽  
Angel Ho ◽  
Matthew Macleod ◽  
William Tam

: Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.


Synthesis ◽  
2021 ◽  
Author(s):  
Masilamani Jeganmohan ◽  
Pinki Sihag

Bicyclic alkenes, including Oxa- and azabicyclic alkenes can be readily activated by using transition-metal complexes with facial selectivity, because of the intrinsic angle strain on carbon-carbon double bonds of these unsymmetrical bicyclic systems. During last decades considerable progress has been done in the area of ring-opening of bicyclic strained ring by employing the concept of C-H activation. This Review comprehensively compiles the various C-H bond activation assisted reactions of oxa- and azabicyclic alkenes, viz., ring-opening reactions, hydroarylation as well as annulation reactions.


Sign in / Sign up

Export Citation Format

Share Document