scholarly journals Rho and Rho Kinase Are Involved in Parathyroid Hormone-Stimulated Protein Kinase C α Translocation and IL-6 Promoter Activity in Osteoblastic Cells

2004 ◽  
Vol 19 (11) ◽  
pp. 1882-1891 ◽  
Author(s):  
Julie M Radeff ◽  
Zsolt Nagy ◽  
Paula H Stern
1988 ◽  
Vol 254 (1) ◽  
pp. E63-E70 ◽  
Author(s):  
J. J. Morrissey

The influence of phorbol myristate acetate (PMA), an activator of protein kinase c, on the secretion of parathyroid hormone from collagenase-dispersed bovine parathyroid cells was tested. The cells were incubated at low (0.5 mM) or high (2.0 mM) concentrations of calcium in the medium, and the hormone secreted into the medium was measured by a radioimmunoassay that recognizes both intact and C-terminal fragments of hormone. At low calcium, the secretory rate averaged 32 +/- 3.8 ng.h-1.(10(5) cells)-1. The addition of 1.6 microM PMA did not affect secretion. At high calcium there was a significant suppression of secretion by 38% to 19.8 +/- 3 ng.h-1.(10(5) cells)-1. The addition of 1.6 microM PMA significantly stimulated hormone secretion to 35.8 +/- 8 ng.h-1.(10(5) cells)-1, a rate indistinguishable from low calcium. This stimulatory effect of PMA at high calcium was seen at PMA concentrations as low as 1.6 nM, did not occur with a biologically inactive 4 alpha-isomer of phorbol ester, and was independent of changes in cellular adenosine 3',5'-cyclic monophosphate levels. Examination of 32P-labeled phosphoproteins by two-dimensional gel electrophoresis revealed acidic proteins of approximately 20,000 and 100,000 Da that were phosphorylated at low and high calcium + 1.6 microM PMA but not at high calcium alone. The protein kinase c activity associated with the membrane fraction of parathyroid cells significantly decreased 40% when the cells were incubated at high vs. low calcium. The data suggest that calcium may regulate parathyroid hormone secretion through changes in protein kinase c activity of the membrane fraction of the cell and protein phosphorylation.


2000 ◽  
Vol 279 (3) ◽  
pp. H1228-H1238 ◽  
Author(s):  
M. Carmen Martínez ◽  
Voahanginirina Randriamboavonjy ◽  
Patrick Ohlmann ◽  
Narcisse Komas ◽  
Juan Duarte ◽  
...  

The mechanisms of Ca2+ handling and sensitization were investigated in human small omental arteries exposed to norepinephrine (NE) and to the thromboxane A2 analog U-46619. Contractions elicited by NE and U-46619 were associated with an increase in intracellular Ca2+ concentration ([Ca2+]i), an increase in Ca2+-independent signaling pathways, or an enhancement of the sensitivity of the myofilaments to Ca2+. The two latter pathways were abolished by protein kinase C (PKC), tyrosine kinase (TK), and Rho-associated protein kinase (ROK) inhibitors. In Ca2+-free medium, both NE and U-46619 elicited an increase in tension that was greatly reduced by PKC inhibitors and abolished by caffeine or ryanodine. After depletion of Ca2+ stores with NE and U-46619 in Ca2+-free medium, addition of CaCl2 in the continuous presence of the agonists produced increases in [Ca2+]i and contractions that were inhibited by nitrendipine and TK inhibitors but not affected by PKC inhibitors. NE and U-46619 induced tyrosine phosphorylation of a 42- or a 58-kDa protein, respectively. These results indicate that the mechanisms leading to contraction elicited by NE and U-46619 in human small omental arteries are composed of Ca2+ release from ryanodine-sensitive stores, Ca2+ influx through nitrendipine-sensitive channels, and Ca2+ sensitization and/or Ca2+-independent pathways. They also show that the TK pathway is involved in the tonic contraction associated with Ca2+ entry, whereas TK, PKC, and ROK mechanisms regulate Ca2+-independent signaling pathways or Ca2+sensitization.


Bone ◽  
1996 ◽  
Vol 18 (1) ◽  
pp. 59-65 ◽  
Author(s):  
M. Sabatini ◽  
C. Lesur ◽  
M. Pacherie ◽  
P. Pastoureau ◽  
N. Kucharczyk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document