Performance of a dual-mode–single-mode waveguide coupler as a modal filter

1992 ◽  
Vol 31 (24) ◽  
pp. 5092 ◽  
Author(s):  
Arun Kumar ◽  
Saeed Ghadirli ◽  
K. Thyagarajan
Author(s):  
Takashi Ikeda ◽  
Yuji Harata ◽  
Yukio Ishida

Unstable vibrations of a two-blade wind turbine tower are theoretically investigated. The theoretical model is a five-degree-of-freedom (5DOF) system, however, the equations of motion are derived separately for 3DOF subsystem (I) and 2DOF subsystem (II). Parametric excitation due to the asymmetry of the moments of inertia of the blade rotor is included only in subsystem (I). Frequency equations are derived and natural frequency diagrams are calculated to clearly demonstrate both the rotational speeds where unstable regions appear and which type of unstable vibrations may occur. It is found that at most, five unstable regions may appear depending on the values of the system parameters in subsystem (I). Two types of unstable vibrations may occur; single mode including a single frequency and dual mode including two frequencies. The influences of the asymmetry of moments of inertia, tower rigidity, and installation position of the blade rotor on the response of the system are also theoretically investigated. Van der Pol’s method is applied to determine the expressions for the response curves. The influences of the blade rotor unbalances on the translational, inclinational and torsional vibrations of the tower are shown. It is found that the amplitudes of the response curves corresponding to single and dual mode are infinite and finite at their boundaries, respectively. The validity of the theoretical analysis is confirmed by numerical simulations.


Author(s):  
Sarvesh Kashyap ◽  
Jahar Sarkar ◽  
Amitesh Kumar

The conventional desert cooler is effective for dry seasons and the regenerative evaporative cooler (REC) is an effective device for humid seasons in composite climate zones. Hence, the dual-mode evaporative cooler (a two-in-one device) is an intelligent choice for air conditioning, which can operate in both direct and regenerative modes depending on the seasonal climatic condition. The exergy and economic analyses of this novel device for global climatic conditions are performed to check the suitability in different regions of the world. An experimental prototype of a dual-mode evaporative cooler is developed and tested to validate the simulation model. The effectiveness, coefficient of performance, exergy destruction, exergy efficiency, operating cost, and specific total cost (STC) are evaluated for both (direct and regenerative) modes of operation. The annual and month-wise performances of dual-mode evaporative cooler have been assessed for five cities of international climate zones. The operating cost of both modes is compared by considering electricity charges in different countries. The dual-mode device is compared with the single-mode device as well. The specific cost is similar for both modes in most of the ASHRAE climatic zones. The present study reveals that significant energy and cost savings are possible by using the dual-mode evaporative cooler. Practical application: This article considers the application of a dual-mode evaporative cooler (direct as well as regenerative mode) in different climate zones and, through investigating the exergy and economic performances, allows designers and operators to understand the potential benefits of employing various operating modes in particular climates.


Author(s):  
V. Nguyen ◽  
R. Sun ◽  
D.K. Sparacin ◽  
T. Montalbo ◽  
C. Manolatou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document