Fifth-order intrinsic aberration calculation method forsoft X-ray and vacuum ultraviolet optical system

2021 ◽  
Author(s):  
Yiqing Cao ◽  
Zhijuan Shen
2019 ◽  
Vol 26 (5) ◽  
pp. 1558-1564
Author(s):  
Yiqing Cao ◽  
Zhijuan Shen ◽  
Zhixia Zheng

Based on the the third-order aberration theory of plane-symmetric optical systems, this paper studies the effect on aberrations of the second-order accuracy of aperture-ray coordinates and the extrinsic aberrations of this kind of optical system; their calculation expressions are derived. The resultant aberration expressions are then applied to calculate the aberrations of two design examples of soft X-ray and vacuum ultraviolet (XUV) optical systems; images are compared with ray-tracing results using SHADOW software to validate the aberration expressions. The study shows that the accuracy of the aberration expressions is satisfactory.


2020 ◽  
Vol 26 ◽  
pp. 58-64 ◽  
Author(s):  
S. Xiao ◽  
S.L. Xiong ◽  
C.Z. Liu ◽  
X.B. Li ◽  
S.N. Zhang ◽  
...  
Keyword(s):  

1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


2021 ◽  
Vol 42 (11) ◽  
pp. 1756-1762
Author(s):  
Qiu-feng SHI ◽  
◽  
Lei WANG ◽  
Hai-jie GUO ◽  
Ping HUANG ◽  
...  

Author(s):  
Ladislav Pína ◽  
René Hudec ◽  
Veronika Maršíková ◽  
Adolf Inneman ◽  
Vladimír Daniel

2000 ◽  
Vol 14 (15) ◽  
pp. 563-570 ◽  
Author(s):  
M. ZAKAULLAH ◽  
IJAZ AKHTAR ◽  
S. F. MEHMOOD ◽  
A. WAHEED ◽  
G. MURTAZA

A time-resolved rugged X-ray detector (XRD) which may be used in intense radiation environment is developed. The detector is used to study the X-ray emission from a low-energy (2.3 kJ) Mather-type plasma focus energized by a 32 μF single capacitor, using hydrogen and argon (3:2) mixture as gas filling. In the detector, the electron emitter is made of nickel and aluminum. The sensitivity of the detector with nickel cathode is found to be very low. No signal could be recorded by masking the detector with even the 2 μm thick Al foil. When Al cathode is used in the XRD, the sensitivity of the detector increases abruptly. To stop the optical/ultraviolet radiation from approaching the active area, it is masked with 6 μm Al filter. It is found that an XRD with nickel cathode is not useful for X-ray detection in a low-energy plasma focus. However, due to its excellent response to vacuum ultraviolet radiation (≤600 Å), it may find application in the study of the axial rundown of current sheath, and its velocity. The X-ray emission from focus plasma is the highest at 0.5 mbar. With increase in pressure, the emission is dropped. At filling pressures of 2.0–2.5 mbar, the X-ray emission increases again. High X-ray emission at 0.5 mbar is due to interaction of energetic electrons in the current sheath with the anode surface, whereas moderately high emission at 2.0–2.5 mbar is caused by an axially moving shockwave.


Sign in / Sign up

Export Citation Format

Share Document