All-fiber, low-cost single-point and quasi-distributed evanescent field temperature sensors with extended temperature measurement range, based on standard telecommunication graded index fibers

2008 ◽  
Vol 47 (23) ◽  
pp. 4212 ◽  
Author(s):  
Marko Kezmah ◽  
Denis Donlagic
2013 ◽  
Vol 6 (2) ◽  
pp. 3089-3127
Author(s):  
N. Wildmann ◽  
M. Mauz ◽  
J. Bange

Abstract. Two types of temperature sensors are designed and tested, a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small RPA. The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10...50° C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurements. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.


2013 ◽  
Vol 6 (8) ◽  
pp. 2101-2113 ◽  
Author(s):  
N. Wildmann ◽  
M. Mauz ◽  
J. Bange

Abstract. Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA). The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012068
Author(s):  
P Chanthamanee ◽  
P Jinda ◽  
M Mani ◽  
S Prasitpong

Abstract The research aims to develop the experimental set of the temperature measurement in liquid by Arduino program displaying data on a smartphone via the Blynk application. The experimental set is composed of 1) 2 liquid temperature sensors (DS18B20 model), 2) Arduino program, and 3) LED screen for showing the temperature value in unit of °C and connect to a smartphone. The Arduino temperature sensor 1 and sensor 2 of the experimental set have 0.57% and 0.51% errors, respectively, compared with the temperature sensor of the B Smart Science Co., Ltd. company. The instrument is applied to the physics laboratory on Newton’s law of cooling to find the cooling rate of water and coffee. This low-cost instrument revealed high accuracy results and easy to connect with other devices.


Author(s):  
G. Forlani ◽  
F. Diotri ◽  
U. Morra di Cella ◽  
R. Roncella

Abstract. Unmanned Aerial Vehicles (UAV) are established platforms for photogrammetric surveys in remote areas. They are lightweight, easy to operate and can allow access to remote sites otherwise difficult (or impossible) to be surveyed with other techniques. Very good accuracy can be obtained also with low-cost UAV platforms as far as a reliable ground control is provided. However, placing ground control points (GCP) in these contexts is time consuming and requires accessibility that, in some cases, can be troublesome. RTK-capable UAV platforms are now available at reasonable costs and can overcome most of these problems, requiring just few (or none at all) GCP and still obtaining accurate results. The paper will present a set of experiments performed in cooperation with ARPA VdA (the Environmental Protection Agency of Valle d’Aosta region, Italy) on a test site in the Italian Alps using a Dji Phantom 4 RTK platform. Its goals are: a) compare accuracies obtainable with different calibration procedures (pre- or on-the-job/self-calibration); b) evaluate the accuracy improvements using different number of GCP when the site allows for it; and c) compare alternative positioning modes for camera projection centres determination, (Network RTK, RTK, Post Processing Kinematic and Single Point Positioning).


2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2021 ◽  
Author(s):  
Mathias Riechel ◽  
Oriol Gutierrez ◽  
Silvia Busquets ◽  
Neus Amela ◽  
Valentina Dimova ◽  
...  

<p>The H2020 innovation project digital-water.city (DWC) aims at boosting the integrated management of water systems in five major European cities – Berlin, Copenhagen, Milan, Paris and Sofia – by leveraging the potential of data and digital technologies. The goal is to quantify the benefits of a panel of 15 innovative digital solutions and achieve their long-term uptake and successful integration in the existing digital systems and governance processes. One of these promising technologies is a new generation of sensors for measuring combined sewer overflow occurrence, developed by ICRA and IoTsens.</p><p>Recent EU regulations have correctly identified CSOs as an important source of contamination and promote appropriate monitoring of all CSO structures in order to control and avoid the detrimental effects on receiving waters. Traditionally there has been a lack of reliable data on the occurrence of CSOs, with the main limitations being: i) the high number of CSO structures per municipality or catchment and ii) the high cost of the flow-monitoring equipment available on the market to measure CSO events. These two factors and the technical constraints of accessing and installing monitoring equipment in some CSO structures have delayed the implementation of extensive monitoring of CSOs. As a result, utilities lack information about the behaviour of the network and potential impacts on the local water bodies.</p><p>The new sensor technology developed by ICRA and IoTsens provides a simple yet robust method for CSO detection based on the deployment of a network of innovative low-cost temperature sensors. The technology reduces CAPEX and OPEX for CSO monitoring, compared to classical flow or water level measurements, and allows utilities to monitor their network extensively. The sensors are installed at the overflows crest and measure air temperature during dry-weather conditions and water temperature when the overflow crest is submerged in case of a CSO event. A CSO event and its duration can be detected by a shift in observed temperature, thanks to the temperature difference between the air and the water phase. Artificial intelligence algorithms further help to convert the continuous measurements into binary information on CSO occurrence. The sensors can quantify the CSO occurrence and duration and remotely provide real-time overflow information through LoRaWAN/2G communication protocols.</p><p>The solution is being deployed since October 2020 in the cities of Sofia, Bulgaria, and Berlin, Germany, with 10 offline sensors installed in each city to improve knowledge on CSO emissions. Further 36 (Sofia) and 9 (Berlin) online sensors will follow this winter. Besides its main goal of improving knowledge on CSO emissions, data in Sofia will also be used to identify suspected dry-weather overflows due to blockages. In Berlin, data will be used to improve the accuracy of an existing hydrodynamic sewer model for resilience analysis, flood forecasting and efficient investment in stormwater management measures. First results show a good detection accuracy of CSO events with the offline version of the technology. As measurements are ongoing and further sensors will be added, an enhanced set of results will be presented at the conference.</p><p>Visit us: https://www.digital-water.city/ </p><p>Follow us: Twitter (@digitalwater_eu); LinkedIn (digital-water.city)</p>


Sign in / Sign up

Export Citation Format

Share Document