scholarly journals Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA)

2013 ◽  
Vol 6 (8) ◽  
pp. 2101-2113 ◽  
Author(s):  
N. Wildmann ◽  
M. Mauz ◽  
J. Bange

Abstract. Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA). The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.

2013 ◽  
Vol 6 (2) ◽  
pp. 3089-3127
Author(s):  
N. Wildmann ◽  
M. Mauz ◽  
J. Bange

Abstract. Two types of temperature sensors are designed and tested, a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small RPA. The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10...50° C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurements. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.


2021 ◽  
Vol 13 (2) ◽  
pp. 269-280
Author(s):  
Elizabeth A. Pillar-Little ◽  
Brian R. Greene ◽  
Francesca M. Lappin ◽  
Tyler M. Bell ◽  
Antonio R. Segales ◽  
...  

Abstract. In July 2018, the University of Oklahoma deployed three CopterSonde remotely piloted aircraft systems (RPASs) to take measurements of the evolving thermodynamic and kinematic state of the atmospheric boundary layer (ABL) over complex terrain in the San Luis Valley, Colorado. A total of 180 flights were completed over 5 d, with teams operating simultaneously at two different sites in the northern half of the valley. A total of 2 d of operations focused on convection initiation studies, 1 d focused on ABL diurnal transition studies, 1 d focused on internal comparison flights, and the last day of operations focused on cold air drainage flows. The data from these coordinated flights provide insight into the horizontal heterogeneity of the atmospheric state over complex terrain. This dataset, along with others collected by other universities and institutions as a part of the LAPSE-RATE campaign, have been submitted to Zenodo (Greene et al., 2020) for free and open access (https://doi.org/10.5281/zenodo.3737087).


2021 ◽  
Vol 13 (7) ◽  
pp. 3539-3549
Author(s):  
Miguel Sanchez Gomez ◽  
Julie K. Lundquist ◽  
Petra M. Klein ◽  
Tyler M. Bell

Abstract. The International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week in July 2018 to demonstrate unmanned aircraft systems' (UASs) capabilities in sampling the atmospheric boundary layer. This week-long experiment was called the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. Numerous remotely piloted aircraft and ground-based instruments were deployed with the objective of capturing meso- and microscale phenomena in the atmospheric boundary layer. The University of Oklahoma deployed one Halo Streamline lidar, and the University of Colorado Boulder deployed two WindCube lidars. In this paper, we use data collected from these Doppler lidars to estimate turbulence dissipation rate throughout the campaign. We observe large temporal variability of turbulence dissipation close to the surface with the WindCube lidars that is not detected by the Halo Streamline. However, the Halo lidar enables estimating dissipation rate within the whole boundary layer, where a diurnal variability emerges. We also find a higher correspondence in turbulence dissipation between the WindCube lidars, which are not co-located, compared to the Halo and WindCube lidar that are co-located, suggesting a significant influence of measurement volume on the retrieved values of dissipation rate. This dataset has been submitted to Zenodo (Sanchez Gomez and Lundquist, 2020) for free and is openly accessible (https://doi.org/10.5281/zenodo.4399967).


2020 ◽  
Author(s):  
Elizabeth A. Pillar-Little ◽  
Brian R. Greene ◽  
Francesca M. Lappin ◽  
Tyler M. Bell ◽  
Antonio R. Segales ◽  
...  

Abstract. In July 2018, the University of Oklahoma deployed three CopterSonde 2 remotely piloted aircraft systems (RPAS) to take measurements of the evolving thermodynamic and kinematic state of the atmospheric boundary layer (ABL) over complex terrain in the San Luis Valley, Colorado. A total of 180 flights were completed over five days, with teams operating simultaneously at two different sites in the northern half of the valley. Two days of operations focused on convection initiation studies, one day focused on ABL diurnal transition studies, one day focused on internal comparison flights, and the last day of operations focused on cold air drainage flows. The data from these coordinated flights provides insight into the horizontal heterogeneity of the atmospheric state over complex terrain as well as the expected horizontal footprint of RPAS profiles. This dataset, along with others collected by other universities and institutions as a part of the LAPSE-RATE campaign, have been submitted to Zenodo (Greene et al., 2020) for free and open access (https://doi.org/10.5281/zenodo.3737087).


2015 ◽  
Vol 34 (1) ◽  
pp. 25651 ◽  
Author(s):  
Marius O. Jonassen ◽  
Priit Tisler ◽  
Barbara Altstädter ◽  
Andreas Scholtz ◽  
Timo Vihma ◽  
...  

2021 ◽  
Author(s):  
Miguel Sanchez Gomez ◽  
Julie K. Lundquist ◽  
Petra M. Klein ◽  
Tyler M. Bell

Abstract. The International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week in July 2018 to demonstrate Unmanned Aircraft Systems’ (UAS) capabilities in sampling the atmospheric boundary layer. This week-long experiment was called the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. Numerous remotely piloted aircrafts and ground-based instruments were deployed with the objective of capturing meso- and microscale phenomena in the atmospheric boundary layer. The University of Oklahoma deployed one Halo Streamline lidar and the University of Colorado Boulder deployed two Windcube lidars. In this paper, we use data collected from these Doppler lidars to estimate turbulence dissipation rate throughout the campaign. We observe large temporal variability of turbulence dissipation close to the surface with the Windcube lidars that is not detected by the Halo Streamline. However, the Halo lidar enables estimating dissipation rate within the whole boundary layer, where a diurnal variability emerges. We also find a higher correspondence in turbulence dissipation between the Windcube lidars, which are not co-located, compared to the Halo and Windcube lidar that are co-located, suggesting a significant influence of measurement volume on the retrieved values of dissipation rate. This dataset have been submitted to Zenodo (Sanchez Gomez and Lundquist, 2020) for free and open access (https://doi.org/10.5281/zenodo.4399967).


2015 ◽  
Vol 96 (10) ◽  
pp. 1743-1764 ◽  
Author(s):  
P. Klein ◽  
T. A. Bonin ◽  
J. F. Newman ◽  
D. D. Turner ◽  
P. B. Chilson ◽  
...  

Abstract This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multiphase, low-cost, multiagency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including 1) instruments deployed, 2) sampling strategies, 3) parameters observed, and 4) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE: namely, the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.


Sign in / Sign up

Export Citation Format

Share Document