Reduction of the pump power threshold in the nonlinear all-optical photonic crystal directional coupler switches

2010 ◽  
Vol 49 (36) ◽  
pp. 6952 ◽  
Author(s):  
Azadeh Taher Rahmati ◽  
Nosrat Granpayeh
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Assad Arshad ◽  
Alexander Hartung ◽  
Arni Candra Pratiwi ◽  
Matthias Jäger

AbstractWe report on the observation of a new phenomenon occurring in a fiber ring laser. This phenomenon is about the transition from an initially bidirectional emission of a reciprocal fiber ring laser to a unidirectional emission at a certain pump power threshold. In addition, the final direction is not predefined but appears to be randomly chosen every time the threshold is exceeded. Therefore, we term this new phenomenon direction instability. Furthermore, we provide a first discussion of how the instability threshold is influenced by the length and the loss of the cavity. We show that the threshold follows a power times length scaling, indicating a nonlinear origin.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hui Liu ◽  
Haoran Yu ◽  
Lun Dai ◽  
Zhi Li ◽  
Jianjun Chen

Abstract For the widely used vertically pumped (VP) method with a free-space beam, very little pump power is absorbed by the gain materials in microlasers because of the large spatial mismatch of areas between laser modes and free-space pump beams together with small thicknesses of gain materials, resulting in a high pump power threshold. Here, an in-plane-waveguide-pump (IPWP) method with a localized waveguide source is proposed to reduce pump power threshold of perovskite microlasers. Owing to reduced spatial mismatch of areas between laser modes and localized waveguide sources as well as increased absorption distances, the pump power threshold of the IPWP method is decreased to approximately 6% that of the VP method. Moreover, under the same multiple of the pump power threshold, the laser linewidth in the IPWP method is narrowed to approximately 70% that in the VP method. By using the IPWP method, selective pumping two adjacent (separation 2 or 3 μm) parallel-located perovskite microlasers is experimentally demonstrated, and no crosstalk is observed. This IPWP method may have applications in low-energy and high-density microlasers and photonic integrated circuits.


2004 ◽  
Vol 12 (1) ◽  
pp. 161 ◽  
Author(s):  
F. Cuesta-Soto ◽  
A. Martínez ◽  
J. García ◽  
F. Ramos ◽  
P. Sanchis ◽  
...  

2018 ◽  
Vol 7 (3.29) ◽  
pp. 220
Author(s):  
Sivasindhu M ◽  
P Samundiswary

In future, the telecommunication systems will be totally based upon the photonic integrated circuits and components for the transmission of optical signals. Since optical signals offer high speed, less delay and higher efficiency. This introduces a new research area for photonic crystal based optical components like optical switch, multiplexer, optical filters etc. Among these devices, the optical switch draws more attention due to its primary switching operation. Hence, this paper deals with the modified design structure of GaAs photonic crystal based directional coupler all optical switch which operates at the wavelength of 1300nm. Further the switching performance evaluation of this device is made for both electro optic effect and non-linear optical effect. The design and simulation of the optical switch is done through Comsol Multiphysics software.   


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sivasindhu Masilamani ◽  
Punniakodi Samundiswary

AbstractRecently, the photonic crystal–based optical components and devices have attracted many researchers’ attention because of its nanoscale size which makes it suitable for the photonic integrated applications. Hence, the design of all-optical switch based on photonic crystal structure have been investigated in the past few decades to meet the requirement of ultracompact size with optimized performances such as fast response time, high extinction ratio with low insertion loss. Here, the design of directional coupler–based all-optical switch operating at the wavelength of 1550 nm is proposed with new design values. The resonant operating wavelength of the switch is identified with the help of finite element method. Then, the cross-state switching operation is analysed with the help of finite-difference time-domain method by applying a nonlinear optical Kerr effect switching mechanism. The important performance metrics of the proposed design such as insertion loss, extinction ratio, directivity and the response time are obtained as −0.008 , 26.98, 20.44 dB and 0.13ps, respectively. The total footprint of the proposed optical switch is approximately 128 µm2.


2014 ◽  
Vol 3 (1) ◽  
pp. 66 ◽  
Author(s):  
S. Maktoobi ◽  
R. Ghayour

Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD) is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.


Sign in / Sign up

Export Citation Format

Share Document