plane waveguide
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 3)

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hui Liu ◽  
Haoran Yu ◽  
Lun Dai ◽  
Zhi Li ◽  
Jianjun Chen

Abstract For the widely used vertically pumped (VP) method with a free-space beam, very little pump power is absorbed by the gain materials in microlasers because of the large spatial mismatch of areas between laser modes and free-space pump beams together with small thicknesses of gain materials, resulting in a high pump power threshold. Here, an in-plane-waveguide-pump (IPWP) method with a localized waveguide source is proposed to reduce pump power threshold of perovskite microlasers. Owing to reduced spatial mismatch of areas between laser modes and localized waveguide sources as well as increased absorption distances, the pump power threshold of the IPWP method is decreased to approximately 6% that of the VP method. Moreover, under the same multiple of the pump power threshold, the laser linewidth in the IPWP method is narrowed to approximately 70% that in the VP method. By using the IPWP method, selective pumping two adjacent (separation 2 or 3 μm) parallel-located perovskite microlasers is experimentally demonstrated, and no crosstalk is observed. This IPWP method may have applications in low-energy and high-density microlasers and photonic integrated circuits.


2021 ◽  
Vol 36 (7) ◽  
pp. 901-907
Author(s):  
Yun Jiang ◽  
Yuan Ye ◽  
Daotong Li ◽  
Zhaoyu Huang ◽  
Chao Wang ◽  
...  

A W-band PIN diode single pole double throw (SPDT) switch with low insertion loss (IL) was successfully developed using a hybrid integration circuit (HIC) of microstrip and coplanar waveguide (CPW) in this paper. In order to achieve low loss of the SPDT switch, the beam-lead PIN diode 3D simulation model was accurately established in Ansys High Frequency Structure Simulator (HFSS) and the W-band H-plane waveguide-microstrip transition was realized based on the principle of the magnetic field coupling. The key of the proposed method is to design the H-plane waveguide-microstrip transition, it not only realizes the low IL of the SPDT switch, but also the direct current (DC) bias of the PIN diode can be better grounded. In order to validate the proposed design method, a W-band PIN diode SPDT switch is fabricated and measured. The measurement results show that the IL of the SPDT switch is less than 2 dB in the frequency range of 85 to 95 GHz, while the isolation of the SPDT switch is greater than 15 dB in the frequency range of 89.5 to 94 GHz. In the frequency range of 92 to 93 GHz, the IL of the SPDT switch is less than 1.65 dB, and its isolation is higher than 22 dB. Switch rise time and switch fall time of the SPDT switch are smaller than 29ns and 19ns, respectively. Good agreement between the simulations and measurements validates the design method.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1893
Author(s):  
Faxin Yu ◽  
Qi Zhou ◽  
Zhiyu Wang ◽  
Jiongjiong Mo ◽  
Hua Chen

In this paper, a three-dimensional heterogenous-integrated (3DHI) wafer-level packaging (WLP) process is proposed, and a radio frequency (RF) front-end module with two independent ultra-high frequency (UHF) receiving channels are designed and implemented, which covers 400 MHz–600 MHz and 2050 MHz–2200 MHz respectively for unmanned aerial vehicle (UAV) applications. The module is formed by wafer-to-wafer (W2W) bonding of two high-resistivity silicon (HR-Si) interposers with embedded bare dies and through silicon via (TSV) interconnections. Double-sided deep reactive ion etching (DRIE) and conformal electroplating process are introduced to realize the high-aspect-ratio TSV connection within 290 µm-thick cap interposer. Co-plane waveguide (CPW) transmission lines are fabricated as the process control monitor (PCM), the measured insertion loss of which is less than 0.18 dB/mm at 35 GHz. The designed RF front-end module is fabricated and measured. The measured return loss and gain of each RF channel is better than 13 dB and 21 dB, and the noise figure is less than 1.5 dB. In order to evaluate the capability of the 3DHI process for multi-layer interposers, the module is re-designed and fabricated with four stacked high-resistivity silicon interposers. After W2W bonding of two pairs of interposers and wafer slicing, chip-to chip (C2C) bonding is applied to form a four-layer module with operable temperature gradient.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1410
Author(s):  
M. Channab ◽  
C. F. Pirri ◽  
A. Angelini

In this work, we discuss the use of epsilon-near-zero (ENZ) metamaterials to efficiently couple light radiated by a dipolar source to an in-plane waveguide. We exploit both enhanced and directional emission provided by ENZ metamaterials to optimize the injection of light into the waveguide by tuning the metal fill factor. We show that a net increase in intensity injected into the waveguide with respect to the total power radiated by the isolated dipole can be achieved in experimentally feasible conditions. We think the proposed system may open up new opportunities for several optical applications and integrated technologies, especially for those limited by outcoupling efficiency and emission rate.


2021 ◽  
Author(s):  
Ángel Palomares-Caballero ◽  
Antonio Alex-Amor ◽  
Juan Valenzuela-Valdés ◽  
Pablo Padilla

A multilayer aperture antenna array in millimeter-wave band is presented in this article. The antenna array is based on glide-symmetric holey gap-waveguide technology combined with E-plane insertion gaps for a low-cost and low-loss design. The radiating part of the antenna array is formed by an array of sixteen aperture antennas, grouped in four sets of 2x2 antenna subarrays in E-plane configuration. The 2x2 subarrays are fed by a one-to-four corporate feeding network in E-plane with holey gap-waveguide technology. The antenna array has been manufactured with high precision stereolithography (SLA) and subsequent metal plating. This design procedure yields a low-cost and low-weight manufacturing process for functional prototypes. The complete array has been manufactured and measured, comparing its performance with the simulation results. Measurements show an input reflection coefficient below -10 dB which ranges from 68 GHz to 74 GHz. The measured radiation patterns suit adequately the defined ones in the design stage. Moreover, gain above 19 dBi in the entire operating frequency band is achieved with a 74.1% mean antenna efficiency. <br>


Sign in / Sign up

Export Citation Format

Share Document