Enhanced four-wave mixing in micro-ring resonators integrated with layered graphene oxide films

Author(s):  
Jiayang Wu ◽  
Yunyi Yang ◽  
Yuning Zhang ◽  
Yang Qu ◽  
Linnan Jia ◽  
...  
2020 ◽  
Author(s):  
David Moss

<a>Two-dimensional </a>layered graphene oxide films are integrated with micro-ring resonators to experimentally demonstrate enhanced four-wave mixing, achieving up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated device and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

<a>Two-dimensional </a>layered graphene oxide films are integrated with micro-ring resonators to experimentally demonstrate enhanced four-wave mixing, achieving up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated device and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

We experimentally demonstrate enhanced four-wave mixing in micro-ring resonators (MRRs) integrated with graphene oxide films. We achieve up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated MRR and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

Two-dimensional layered graphene oxide films are integrated with micro-ring resonators to experimentally demonstrate enhanced four-wave mixing, achieving up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated device and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

We experimentally demonstrate enhanced four-wave mixing in micro-ring resonators (MRRs) integrated with graphene oxide films. We achieve up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated MRR and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

We experimentally demonstrate enhanced four-wave mixing in micro-ring resonators (MRRs) integrated with graphene oxide films. We achieve up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated MRR and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D graphene oxide (GO) films is experimentally demonstrated. We achieve a high conversion efficiency improvement of ~7.3 dB for a 2-cm-long waveguide with monolayer GO film.


2020 ◽  
Vol 8 (23) ◽  
pp. 2001048 ◽  
Author(s):  
Yang Qu ◽  
Jiayang Wu ◽  
Yunyi Yang ◽  
Yuning Zhang ◽  
Yao Liang ◽  
...  

2020 ◽  
Author(s):  
David Moss ◽  
Jiayang Wu ◽  
xingyuan xu ◽  
Yunyi Yang ◽  
linnan jia ◽  
...  

Layered two-dimensional (2D) graphene oxide (GO) films are integrated with micro-ring resonators (MRRs) to experimentally demonstrate enhanced nonlinear optics in the form of four-wave mixing (FWM). Both uniformly coated and patterned GO films are integrated on CMOS-compatible doped silica MRRs using a large-area, transfer-free, layer-by-layer GO coating method together with photolithography and lift-off processes, yielding precise control of the film thickness, placement, and coating length. The high Kerr nonlinearity and low loss of the GO films combined with the strong light-matter interaction within the MRRs results in a significant improvement in the FWM efficiency in the hybrid MRRs. Detailed FWM measurements are performed at different pump powers and resonant wavelengths for the uniformly coated MRRs with 1−5 layers of GO as well as the patterned devices with 10−50 layers of GO. The experimental results show good agreement with theory, achieving up to ~7.6-dB enhancement in the FWM conversion efficiency (CE) for an MRR uniformly coated with 1 layer of GO and ~10.3-dB for a patterned device with 50 layers of GO. By fitting the measured CE as a function of pump power for devices with different numbers of GO layers, we also extract the dependence of GO’s third-order nonlinearity on layer number and pump power, revealing interesting physical insights about the evolution of the layered GO films from 2D monolayers to quasi bulk-like behavior. These results confirm the high nonlinear optical performance of integrated photonic resonators incorporated with 2D layered GO films.


Sign in / Sign up

Export Citation Format

Share Document